/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" namespace opencv_test { namespace { using cv::ml::SVMSGD; using cv::ml::TrainData; class CV_SVMSGDTrainTest : public cvtest::BaseTest { public: enum TrainDataType { UNIFORM_SAME_SCALE, UNIFORM_DIFFERENT_SCALES }; CV_SVMSGDTrainTest(const Mat &_weights, float shift, TrainDataType type, double precision = 0.01); private: virtual void run( int start_from ); static float decisionFunction(const Mat &sample, const Mat &weights, float shift); void makeData(int samplesCount, const Mat &weights, float shift, RNG &rng, Mat &samples, Mat & responses); void generateSameBorders(int featureCount); void generateDifferentBorders(int featureCount); TrainDataType type; double precision; std::vector > borders; cv::Ptr data; cv::Mat testSamples; cv::Mat testResponses; static const int TEST_VALUE_LIMIT = 500; }; void CV_SVMSGDTrainTest::generateSameBorders(int featureCount) { float lowerLimit = -TEST_VALUE_LIMIT; float upperLimit = TEST_VALUE_LIMIT; for (int featureIndex = 0; featureIndex < featureCount; featureIndex++) { borders.push_back(std::pair(lowerLimit, upperLimit)); } } void CV_SVMSGDTrainTest::generateDifferentBorders(int featureCount) { float lowerLimit = -TEST_VALUE_LIMIT; float upperLimit = TEST_VALUE_LIMIT; cv::RNG rng(0); for (int featureIndex = 0; featureIndex < featureCount; featureIndex++) { int crit = rng.uniform(0, 2); if (crit > 0) { borders.push_back(std::pair(lowerLimit, upperLimit)); } else { borders.push_back(std::pair(lowerLimit/1000, upperLimit/1000)); } } } float CV_SVMSGDTrainTest::decisionFunction(const Mat &sample, const Mat &weights, float shift) { return static_cast(sample.dot(weights)) + shift; } void CV_SVMSGDTrainTest::makeData(int samplesCount, const Mat &weights, float shift, RNG &rng, Mat &samples, Mat & responses) { int featureCount = weights.cols; samples.create(samplesCount, featureCount, CV_32FC1); for (int featureIndex = 0; featureIndex < featureCount; featureIndex++) { rng.fill(samples.col(featureIndex), RNG::UNIFORM, borders[featureIndex].first, borders[featureIndex].second); } responses.create(samplesCount, 1, CV_32FC1); for (int i = 0 ; i < samplesCount; i++) { responses.at(i) = decisionFunction(samples.row(i), weights, shift) > 0 ? 1.f : -1.f; } } CV_SVMSGDTrainTest::CV_SVMSGDTrainTest(const Mat &weights, float shift, TrainDataType _type, double _precision) { type = _type; precision = _precision; int featureCount = weights.cols; switch(type) { case UNIFORM_SAME_SCALE: generateSameBorders(featureCount); break; case UNIFORM_DIFFERENT_SCALES: generateDifferentBorders(featureCount); break; default: CV_Error(CV_StsBadArg, "Unknown train data type"); } RNG rng(0); Mat trainSamples; Mat trainResponses; int trainSamplesCount = 10000; makeData(trainSamplesCount, weights, shift, rng, trainSamples, trainResponses); data = TrainData::create(trainSamples, cv::ml::ROW_SAMPLE, trainResponses); int testSamplesCount = 100000; makeData(testSamplesCount, weights, shift, rng, testSamples, testResponses); } void CV_SVMSGDTrainTest::run( int /*start_from*/ ) { cv::Ptr svmsgd = SVMSGD::create(); svmsgd->train(data); Mat responses; svmsgd->predict(testSamples, responses); int errCount = 0; int testSamplesCount = testSamples.rows; CV_Assert((responses.type() == CV_32FC1) && (testResponses.type() == CV_32FC1)); for (int i = 0; i < testSamplesCount; i++) { if (responses.at(i) * testResponses.at(i) < 0) errCount++; } float err = (float)errCount / testSamplesCount; if ( err > precision ) { ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); } } void makeWeightsAndShift(int featureCount, Mat &weights, float &shift) { weights.create(1, featureCount, CV_32FC1); cv::RNG rng(0); double lowerLimit = -1; double upperLimit = 1; rng.fill(weights, RNG::UNIFORM, lowerLimit, upperLimit); shift = static_cast(rng.uniform(-featureCount, featureCount)); } TEST(ML_SVMSGD, trainSameScale2) { int featureCount = 2; Mat weights; float shift = 0; makeWeightsAndShift(featureCount, weights, shift); CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_SAME_SCALE); test.safe_run(); } TEST(ML_SVMSGD, trainSameScale5) { int featureCount = 5; Mat weights; float shift = 0; makeWeightsAndShift(featureCount, weights, shift); CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_SAME_SCALE); test.safe_run(); } TEST(ML_SVMSGD, trainSameScale100) { int featureCount = 100; Mat weights; float shift = 0; makeWeightsAndShift(featureCount, weights, shift); CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_SAME_SCALE, 0.02); test.safe_run(); } TEST(ML_SVMSGD, trainDifferentScales2) { int featureCount = 2; Mat weights; float shift = 0; makeWeightsAndShift(featureCount, weights, shift); CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.01); test.safe_run(); } TEST(ML_SVMSGD, trainDifferentScales5) { int featureCount = 5; Mat weights; float shift = 0; makeWeightsAndShift(featureCount, weights, shift); CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.01); test.safe_run(); } TEST(ML_SVMSGD, trainDifferentScales100) { int featureCount = 100; Mat weights; float shift = 0; makeWeightsAndShift(featureCount, weights, shift); CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.01); test.safe_run(); } TEST(ML_SVMSGD, twoPoints) { Mat samples(2, 2, CV_32FC1); samples.at(0,0) = 0; samples.at(0,1) = 0; samples.at(1,0) = 1000; samples.at(1,1) = 1; Mat responses(2, 1, CV_32FC1); responses.at(0) = -1; responses.at(1) = 1; cv::Ptr trainData = TrainData::create(samples, cv::ml::ROW_SAMPLE, responses); Mat realWeights(1, 2, CV_32FC1); realWeights.at(0) = 1000; realWeights.at(1) = 1; float realShift = -500000.5; float normRealWeights = static_cast(cv::norm(realWeights)); // TODO cvtest realWeights /= normRealWeights; realShift /= normRealWeights; cv::Ptr svmsgd = SVMSGD::create(); svmsgd->setOptimalParameters(); svmsgd->train( trainData ); Mat foundWeights = svmsgd->getWeights(); float foundShift = svmsgd->getShift(); float normFoundWeights = static_cast(cv::norm(foundWeights)); // TODO cvtest foundWeights /= normFoundWeights; foundShift /= normFoundWeights; EXPECT_LE(cv::norm(Mat(foundWeights - realWeights)), 0.001); // TODO cvtest EXPECT_LE(std::abs((foundShift - realShift) / realShift), 0.05); } }} // namespace