#include <algorithm> #include <iostream> #include <cctype> #include <opencv2/imgproc.hpp> #include <opencv2/imgcodecs.hpp> #include <opencv2/gapi.hpp> #include <opencv2/gapi/core.hpp> #include <opencv2/gapi/imgproc.hpp> #include <opencv2/gapi/infer.hpp> #include <opencv2/gapi/render.hpp> #include <opencv2/gapi/infer/ie.hpp> #include <opencv2/gapi/cpu/gcpukernel.hpp> #include <opencv2/gapi/streaming/cap.hpp> #include <opencv2/highgui.hpp> #include <opencv2/gapi/infer/parsers.hpp> const std::string about = "This is an OpenCV-based version of Privacy Masking Camera example"; const std::string keys = "{ h help | | Print this help message }" "{ input | | Path to the input video file }" "{ platm | vehicle-license-plate-detection-barrier-0106.xml | Path to OpenVINO IE vehicle/plate detection model (.xml) }" "{ platd | CPU | Target device for vehicle/plate detection model (e.g. CPU, GPU, VPU, ...) }" "{ facem | face-detection-retail-0005.xml | Path to OpenVINO IE face detection model (.xml) }" "{ faced | CPU | Target device for face detection model (e.g. CPU, GPU, VPU, ...) }" "{ trad | false | Run processing in a traditional (non-pipelined) way }" "{ noshow | false | Don't display UI (improves performance) }"; namespace { std::string weights_path(const std::string &model_path) { const auto EXT_LEN = 4u; const auto sz = model_path.size(); CV_Assert(sz > EXT_LEN); auto ext = model_path.substr(sz - EXT_LEN); std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){ return static_cast<unsigned char>(std::tolower(c)); }); CV_Assert(ext == ".xml"); return model_path.substr(0u, sz - EXT_LEN) + ".bin"; } } // namespace namespace custom { G_API_NET(VehLicDetector, <cv::GMat(cv::GMat)>, "vehicle-license-plate-detector"); G_API_NET(FaceDetector, <cv::GMat(cv::GMat)>, "face-detector"); using GDetections = cv::GArray<cv::Rect>; using GPrims = cv::GArray<cv::gapi::wip::draw::Prim>; G_API_OP(ToMosaic, <GPrims(GDetections, GDetections)>, "custom.privacy_masking.to_mosaic") { static cv::GArrayDesc outMeta(const cv::GArrayDesc &, const cv::GArrayDesc &) { return cv::empty_array_desc(); } }; GAPI_OCV_KERNEL(OCVToMosaic, ToMosaic) { static void run(const std::vector<cv::Rect> &in_plate_rcs, const std::vector<cv::Rect> &in_face_rcs, std::vector<cv::gapi::wip::draw::Prim> &out_prims) { out_prims.clear(); const auto cvt = [](cv::Rect rc) { // Align the mosaic region to mosaic block size const int BLOCK_SIZE = 24; const int dw = BLOCK_SIZE - (rc.width % BLOCK_SIZE); const int dh = BLOCK_SIZE - (rc.height % BLOCK_SIZE); rc.width += dw; rc.height += dh; rc.x -= dw / 2; rc.y -= dh / 2; return cv::gapi::wip::draw::Mosaic{rc, BLOCK_SIZE, 0}; }; for (auto &&rc : in_plate_rcs) { out_prims.emplace_back(cvt(rc)); } for (auto &&rc : in_face_rcs) { out_prims.emplace_back(cvt(rc)); } } }; } // namespace custom int main(int argc, char *argv[]) { cv::CommandLineParser cmd(argc, argv, keys); cmd.about(about); if (cmd.has("help")) { cmd.printMessage(); return 0; } const std::string input = cmd.get<std::string>("input"); const bool no_show = cmd.get<bool>("noshow"); const bool run_trad = cmd.get<bool>("trad"); cv::GMat in; cv::GMat blob_plates = cv::gapi::infer<custom::VehLicDetector>(in); cv::GMat blob_faces = cv::gapi::infer<custom::FaceDetector>(in); // VehLicDetector from Open Model Zoo marks vehicles with label "1" and // license plates with label "2", filter out license plates only. cv::GOpaque<cv::Size> sz = cv::gapi::streaming::size(in); cv::GArray<cv::Rect> rc_plates, rc_faces; cv::GArray<int> labels; std::tie(rc_plates, labels) = cv::gapi::parseSSD(blob_plates, sz, 0.5f, 2); // Face detector produces faces only so there's no need to filter by label, // pass "-1". std::tie(rc_faces, labels) = cv::gapi::parseSSD(blob_faces, sz, 0.5f, -1); cv::GMat out = cv::gapi::wip::draw::render3ch(in, custom::ToMosaic::on(rc_plates, rc_faces)); cv::GComputation graph(in, out); const auto plate_model_path = cmd.get<std::string>("platm"); auto plate_net = cv::gapi::ie::Params<custom::VehLicDetector> { plate_model_path, // path to topology IR weights_path(plate_model_path), // path to weights cmd.get<std::string>("platd"), // device specifier }; const auto face_model_path = cmd.get<std::string>("facem"); auto face_net = cv::gapi::ie::Params<custom::FaceDetector> { face_model_path, // path to topology IR weights_path(face_model_path), // path to weights cmd.get<std::string>("faced"), // device specifier }; auto kernels = cv::gapi::kernels<custom::OCVToMosaic>(); auto networks = cv::gapi::networks(plate_net, face_net); cv::TickMeter tm; cv::Mat out_frame; std::size_t frames = 0u; std::cout << "Reading " << input << std::endl; if (run_trad) { cv::Mat in_frame; cv::VideoCapture cap(input); cap >> in_frame; auto exec = graph.compile(cv::descr_of(in_frame), cv::compile_args(kernels, networks)); tm.start(); do { exec(in_frame, out_frame); if (!no_show) { cv::imshow("Out", out_frame); cv::waitKey(1); } frames++; } while (cap.read(in_frame)); tm.stop(); } else { auto pipeline = graph.compileStreaming(cv::compile_args(kernels, networks)); pipeline.setSource(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input)); pipeline.start(); tm.start(); while (pipeline.pull(cv::gout(out_frame))) { frames++; if (!no_show) { cv::imshow("Out", out_frame); cv::waitKey(1); } } tm.stop(); } std::cout << "Processed " << frames << " frames" << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl; return 0; }