#!/usr/bin/python import cv2.cv as cv import time from pydmtx import DataMatrix import numpy import sys import math ''' Find 2 D barcode based on up to 3 channel datamatrix ''' def absnorm8(im, im8): """ im may be any single-channel image type. Return an 8-bit version, absolute value, normalized so that max is 255 """ (minVal, maxVal, _, _) = cv.MinMaxLoc(im) cv.ConvertScaleAbs(im, im8, 255 / max(abs(minVal), abs(maxVal)), 0) return im8 font = cv.InitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 1.0, 1.0, thickness = 2, lineType = cv.CV_AA) if 0: started = time.time() print dm_write.decode(bg.width, bg.height, buffer(bg.tostring()), max_count = 1, min_edge = 12, max_edge = 13, shape = DataMatrix.DmtxSymbol10x10) # , timeout = 10) print "took", time.time() - started class DmtxFinder: def __init__(self): self.cache = {} self.dm = DataMatrix() def Cached(self, name, rows, cols, type): key = (name, rows, cols) if not key in self.cache: self.cache[key] = cv.CreateMat(rows, cols, type) return self.cache[key] def find0(self, img): started = time.time() self.dm.decode(img.width, img.height, buffer(img.tostring()), max_count = 4, #min_edge = 6, #max_edge = 19 # Units of 2 pixels ) print "brute", time.time() - started found = {} for i in range(self.dm.count()): stats = dm_read.stats(i + 1) print stats found[stats[0]] = stats[1] return found def find(self, img): started = time.time() gray = self.Cached('gray', img.height, img.width, cv.CV_8UC1) cv.CvtColor(img, gray, cv.CV_BGR2GRAY) sobel = self.Cached('sobel', img.height, img.width, cv.CV_16SC1) sobely = self.Cached('sobely', img.height, img.width, cv.CV_16SC1) cv.Sobel(gray, sobel, 1, 0) cv.Sobel(gray, sobely, 0, 1) cv.Add(sobel, sobely, sobel) sobel8 = self.Cached('sobel8', sobel.height, sobel.width, cv.CV_8UC1) absnorm8(sobel, sobel8) cv.Threshold(sobel8, sobel8, 128.0, 255.0, cv.CV_THRESH_BINARY) sobel_integral = self.Cached('sobel_integral', img.height + 1, img.width + 1, cv.CV_32SC1) cv.Integral(sobel8, sobel_integral) d = 16 _x1y1 = cv.GetSubRect(sobel_integral, (0, 0, sobel_integral.cols - d, sobel_integral.rows - d)) _x1y2 = cv.GetSubRect(sobel_integral, (0, d, sobel_integral.cols - d, sobel_integral.rows - d)) _x2y1 = cv.GetSubRect(sobel_integral, (d, 0, sobel_integral.cols - d, sobel_integral.rows - d)) _x2y2 = cv.GetSubRect(sobel_integral, (d, d, sobel_integral.cols - d, sobel_integral.rows - d)) summation = cv.CloneMat(_x2y2) cv.Sub(summation, _x1y2, summation) cv.Sub(summation, _x2y1, summation) cv.Add(summation, _x1y1, summation) sum8 = self.Cached('sum8', summation.height, summation.width, cv.CV_8UC1) absnorm8(summation, sum8) cv.Threshold(sum8, sum8, 32.0, 255.0, cv.CV_THRESH_BINARY) cv.ShowImage("sum8", sum8) seq = cv.FindContours(sum8, cv.CreateMemStorage(), cv.CV_RETR_EXTERNAL) subimg = cv.GetSubRect(img, (d / 2, d / 2, sum8.cols, sum8.rows)) t_cull = time.time() - started seqs = [] while seq: seqs.append(seq) seq = seq.h_next() started = time.time() found = {} print 'seqs', len(seqs) for seq in seqs: area = cv.ContourArea(seq) if area > 1000: rect = cv.BoundingRect(seq) edge = int((14 / 14.) * math.sqrt(area) / 2 + 0.5) candidate = cv.GetSubRect(subimg, rect) sym = self.dm.decode(candidate.width, candidate.height, buffer(candidate.tostring()), max_count = 1, #min_edge = 6, #max_edge = int(edge) # Units of 2 pixels ) if sym: onscreen = [(d / 2 + rect[0] + x, d / 2 + rect[1] + y) for (x, y) in self.dm.stats(1)[1]] found[sym] = onscreen else: print "FAILED" t_brute = time.time() - started print "cull took", t_cull, "brute", t_brute return found bg = cv.CreateMat(1024, 1024, cv.CV_8UC3) cv.Set(bg, cv.RGB(0, 0, 0)) df = DmtxFinder() cv.NamedWindow("camera", 1) def mkdmtx(msg): dm_write = DataMatrix() dm_write.encode(msg) pi = dm_write.image # .resize((14, 14)) cv_im = cv.CreateImageHeader(pi.size, cv.IPL_DEPTH_8U, 3) cv.SetData(cv_im, pi.tostring()) return cv_im # test = [('WIL', (100,100))]: # , ('LOW', (250,100)), ('GAR', (300, 300)), ('AGE', (500, 300))]: test = [] y = 10 for j in range(7): r = 28 + j * 4 mr = r * math.sqrt(2) y += mr * 1.8 test += [(str(deg) + "abcdefgh"[j], (50 + deg * 11, y), math.pi * deg / 180, r) for deg in range(0, 90, 10)] for (msg, (x, y), angle, r) in test: map = cv.CreateMat(2, 3, cv.CV_32FC1) corners = [(x + r * math.cos(angle + th), y + r * math.sin(angle + th)) for th in [0, math.pi / 2, math.pi, 3 * math.pi / 4]] src = mkdmtx(msg) (sx, sy) = cv.GetSize(src) cv.GetAffineTransform([(0,0), (sx, 0), (sx, sy)], corners[:3], map) temp = cv.CreateMat(bg.rows, bg.cols, cv.CV_8UC3) cv.Set(temp, cv.RGB(0, 0, 0)) cv.WarpAffine(src, temp, map) cv.Or(temp, bg, bg) cv.ShowImage("comp", bg) scribble = cv.CloneMat(bg) if 0: for i in range(10): df.find(bg) for (sym, coords) in df.find(bg).items(): print sym cv.PolyLine(scribble, [coords], 1, cv.CV_RGB(255, 0,0), 1, lineType = cv.CV_AA) Xs = [x for (x, y) in coords] Ys = [y for (x, y) in coords] where = ((min(Xs) + max(Xs)) / 2, max(Ys) - 50) cv.PutText(scribble, sym, where, font, cv.RGB(0,255, 0)) cv.ShowImage("results", scribble) cv.WaitKey() cv.DestroyAllWindows() sys.exit(0) capture = cv.CaptureFromCAM(0) while True: img = cv.QueryFrame(capture) cv.ShowImage("capture", img) print df.find(img) cv.WaitKey(6)