#!/usr/bin/env python # Python 2/3 compatibility from __future__ import print_function import numpy as np from numpy import pi, sin, cos import cv2 defaultSize = 512 class TestSceneRender(): def __init__(self, bgImg = None, fgImg = None, deformation = False, noise = 0.0, speed = 0.25, **params): self.time = 0.0 self.timeStep = 1.0 / 30.0 self.foreground = fgImg self.deformation = deformation self.noise = noise self.speed = speed if bgImg is not None: self.sceneBg = bgImg.copy() else: self.sceneBg = np.zeros(defaultSize, defaultSize, np.uint8) self.w = self.sceneBg.shape[0] self.h = self.sceneBg.shape[1] if fgImg is not None: self.foreground = fgImg.copy() self.center = self.currentCenter = (int(self.w/2 - fgImg.shape[0]/2), int(self.h/2 - fgImg.shape[1]/2)) self.xAmpl = self.sceneBg.shape[0] - (self.center[0] + fgImg.shape[0]) self.yAmpl = self.sceneBg.shape[1] - (self.center[1] + fgImg.shape[1]) self.initialRect = np.array([ (self.h/2, self.w/2), (self.h/2, self.w/2 + self.w/10), (self.h/2 + self.h/10, self.w/2 + self.w/10), (self.h/2 + self.h/10, self.w/2)]).astype(int) self.currentRect = self.initialRect np.random.seed(10) def getXOffset(self, time): return int(self.xAmpl*cos(time*self.speed)) def getYOffset(self, time): return int(self.yAmpl*sin(time*self.speed)) def setInitialRect(self, rect): self.initialRect = rect def getRectInTime(self, time): if self.foreground is not None: tmp = np.array(self.center) + np.array((self.getXOffset(time), self.getYOffset(time))) x0, y0 = tmp x1, y1 = tmp + self.foreground.shape[0:2] return np.array([y0, x0, y1, x1]) else: x0, y0 = self.initialRect[0] + np.array((self.getXOffset(time), self.getYOffset(time))) x1, y1 = self.initialRect[2] + np.array((self.getXOffset(time), self.getYOffset(time))) return np.array([y0, x0, y1, x1]) def getCurrentRect(self): if self.foreground is not None: x0 = self.currentCenter[0] y0 = self.currentCenter[1] x1 = self.currentCenter[0] + self.foreground.shape[0] y1 = self.currentCenter[1] + self.foreground.shape[1] return np.array([y0, x0, y1, x1]) else: x0, y0 = self.currentRect[0] x1, y1 = self.currentRect[2] return np.array([x0, y0, x1, y1]) def getNextFrame(self): img = self.sceneBg.copy() if self.foreground is not None: self.currentCenter = (self.center[0] + self.getXOffset(self.time), self.center[1] + self.getYOffset(self.time)) img[self.currentCenter[0]:self.currentCenter[0]+self.foreground.shape[0], self.currentCenter[1]:self.currentCenter[1]+self.foreground.shape[1]] = self.foreground else: self.currentRect = self.initialRect + np.int( 30*cos(self.time) + 50*sin(self.time/3)) if self.deformation: self.currentRect[1:3] += int(self.h/20*cos(self.time)) cv2.fillConvexPoly(img, self.currentRect, (0, 0, 255)) self.time += self.timeStep if self.noise: noise = np.zeros(self.sceneBg.shape, np.int8) cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise) img = cv2.add(img, noise, dtype=cv2.CV_8UC3) return img def resetTime(self): self.time = 0.0 if __name__ == '__main__': backGr = cv2.imread('../../../samples/data/lena.jpg') render = TestSceneRender(backGr, noise = 0.5) while True: img = render.getNextFrame() cv2.imshow('img', img) ch = 0xFF & cv2.waitKey(3) if ch == 27: break cv2.destroyAllWindows()