#!/usr/bin/python ''' This example illustrates how to use Hough Transform to find lines ''' # Python 2/3 compatibility from __future__ import print_function import cv2 import numpy as np import sys import math from tests_common import NewOpenCVTests def linesDiff(line1, line2): norm1 = cv2.norm(line1 - line2, cv2.NORM_L2) line3 = line1[2:4] + line1[0:2] norm2 = cv2.norm(line3 - line2, cv2.NORM_L2) return min(norm1, norm2) class houghlines_test(NewOpenCVTests): def test_houghlines(self): fn = "/samples/data/pic1.png" src = self.get_sample(fn) dst = cv2.Canny(src, 50, 200) lines = cv2.HoughLinesP(dst, 1, math.pi/180.0, 40, np.array([]), 50, 10)[:,0,:] eps = 5 testLines = [ #rect1 [ 232, 25, 43, 25], [ 43, 129, 232, 129], [ 43, 129, 43, 25], [232, 129, 232, 25], #rect2 [251, 86, 314, 183], [252, 86, 323, 40], [315, 183, 386, 137], [324, 40, 386, 136], #triangle [245, 205, 377, 205], [244, 206, 305, 278], [306, 279, 377, 205], #rect3 [153, 177, 196, 177], [153, 277, 153, 179], [153, 277, 196, 277], [196, 177, 196, 277]] matches_counter = 0 for i in range(len(testLines)): for j in range(len(lines)): if linesDiff(testLines[i], lines[j]) < eps: matches_counter += 1 self.assertGreater(float(matches_counter) / len(testLines), .7)