#!/usr/bin/env python ''' face detection using haar cascades ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 def detect(img, cascade): rects = cascade.detectMultiScale(img, scaleFactor=1.3, minNeighbors=4, minSize=(30, 30), flags=cv2.CASCADE_SCALE_IMAGE) if len(rects) == 0: return [] rects[:,2:] += rects[:,:2] return rects from tests_common import NewOpenCVTests, intersectionRate class facedetect_test(NewOpenCVTests): def test_facedetect(self): import sys, getopt cascade_fn = self.repoPath + '/data/haarcascades/haarcascade_frontalface_alt.xml' nested_fn = self.repoPath + '/data/haarcascades/haarcascade_eye.xml' cascade = cv2.CascadeClassifier(cascade_fn) nested = cv2.CascadeClassifier(nested_fn) samples = ['samples/data/lena.jpg', 'cv/cascadeandhog/images/mona-lisa.png'] faces = [] eyes = [] testFaces = [ #lena [[218, 200, 389, 371], [ 244, 240, 294, 290], [ 309, 246, 352, 289]], #lisa [[167, 119, 307, 259], [188, 153, 229, 194], [236, 153, 277, 194]] ] for sample in samples: img = self.get_sample( sample) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (5, 5), 5.1) rects = detect(gray, cascade) faces.append(rects) if not nested.empty(): for x1, y1, x2, y2 in rects: roi = gray[y1:y2, x1:x2] subrects = detect(roi.copy(), nested) for rect in subrects: rect[0] += x1 rect[2] += x1 rect[1] += y1 rect[3] += y1 eyes.append(subrects) faces_matches = 0 eyes_matches = 0 eps = 0.8 for i in range(len(faces)): for j in range(len(testFaces)): if intersectionRate(faces[i][0], testFaces[j][0]) > eps: faces_matches += 1 #check eyes if len(eyes[i]) == 2: if intersectionRate(eyes[i][0], testFaces[j][1]) > eps and intersectionRate(eyes[i][1] , testFaces[j][2]) > eps: eyes_matches += 1 elif intersectionRate(eyes[i][1], testFaces[j][1]) > eps and intersectionRate(eyes[i][0], testFaces[j][2]) > eps: eyes_matches += 1 self.assertEqual(faces_matches, 2) self.assertEqual(eyes_matches, 2)