import numpy as np import sys import os import argparse import tensorflow as tf from tensorflow.python.platform import gfile from imagenet_cls_test_alexnet import MeanValueFetch, DnnCaffeModel, Framework, ClsAccEvaluation try: import cv2 as cv except ImportError: raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, ' 'configure environemnt variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)') # If you've got an exception "Cannot load libmkl_avx.so or libmkl_def.so" or similar, try to export next variable # before runnigng the script: # LD_PRELOAD=/opt/intel/mkl/lib/intel64/libmkl_core.so:/opt/intel/mkl/lib/intel64/libmkl_sequential.so class TensorflowModel(Framework): sess = tf.Session output = tf.Graph def __init__(self, model_file, in_blob_name, out_blob_name): self.in_blob_name = in_blob_name self.sess = tf.Session() with gfile.FastGFile(model_file, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) self.sess.graph.as_default() tf.import_graph_def(graph_def, name='') self.output = self.sess.graph.get_tensor_by_name(out_blob_name + ":0") def get_name(self): return 'Tensorflow' def get_output(self, input_blob): assert len(input_blob.shape) == 4 batch_tf = input_blob.transpose(0, 2, 3, 1) out = self.sess.run(self.output, {self.in_blob_name+':0': batch_tf}) out = out[..., 1:1001] return out class DnnTfInceptionModel(DnnCaffeModel): net = cv.dnn.Net() def __init__(self, model_file, in_blob_name, out_blob_name): self.net = cv.dnn.readNetFromTensorflow(model_file) self.in_blob_name = in_blob_name self.out_blob_name = out_blob_name def get_output(self, input_blob): return super(DnnTfInceptionModel, self).get_output(input_blob)[..., 1:1001] if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--imgs_dir", help="path to ImageNet validation subset images dir, ILSVRC2012_img_val dir") parser.add_argument("--img_cls_file", help="path to file with classes ids for images, download it here:" "https://github.com/opencv/opencv_extra/tree/master/testdata/dnn/img_classes_inception.txt") parser.add_argument("--model", help="path to tensorflow model, download it here:" "https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip") parser.add_argument("--log", help="path to logging file") parser.add_argument("--batch_size", help="size of images in batch", default=1) parser.add_argument("--frame_size", help="size of input image", default=224) parser.add_argument("--in_blob", help="name for input blob", default='input') parser.add_argument("--out_blob", help="name for output blob", default='softmax2') args = parser.parse_args() data_fetcher = MeanValueFetch(args.frame_size, args.imgs_dir, True) frameworks = [TensorflowModel(args.model, args.in_blob, args.out_blob), DnnTfInceptionModel(args.model, '', args.out_blob)] acc_eval = ClsAccEvaluation(args.log, args.img_cls_file, args.batch_size) acc_eval.process(frameworks, data_fetcher)