// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2019, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.

#include "test_precomp.hpp"
#include "opencv2/core/ocl.hpp"

namespace opencv_test { namespace {

class DNNTestNetwork : public DNNTestLayer
{
public:
    void processNet(const std::string& weights, const std::string& proto,
                    Size inpSize, const std::string& outputLayer = "",
                    const std::string& halideScheduler = "",
                    double l1 = 0.0, double lInf = 0.0)
    {
        // Create a common input blob.
        int blobSize[] = {1, 3, inpSize.height, inpSize.width};
        Mat inp(4, blobSize, CV_32FC1);
        randu(inp, 0.0f, 1.0f);

        processNet(weights, proto, inp, outputLayer, halideScheduler, l1, lInf);
    }

    void processNet(std::string weights, std::string proto,
                    Mat inp, const std::string& outputLayer = "",
                    std::string halideScheduler = "",
                    double l1 = 0.0, double lInf = 0.0, double detectionConfThresh = 0.2, bool useWinograd = true)
    {
        checkBackend();
        l1 = l1 ? l1 : default_l1;
        lInf = lInf ? lInf : default_lInf;

        weights = findDataFile(weights, false);
        if (!proto.empty())
            proto = findDataFile(proto);

        // Create two networks - with default backend and target and a tested one.
        Net netDefault = readNet(weights, proto);
        netDefault.setPreferableBackend(DNN_BACKEND_OPENCV);
        netDefault.setInput(inp);
        Mat outDefault = netDefault.forward(outputLayer).clone();

        net = readNet(weights, proto);
        net.setInput(inp);
        net.setPreferableBackend(backend);
        net.setPreferableTarget(target);

        if (target == DNN_TARGET_CPU_FP16)
            net.enableWinograd(false);

        if (backend == DNN_BACKEND_HALIDE && !halideScheduler.empty())
        {
            halideScheduler = findDataFile(halideScheduler);
            net.setHalideScheduler(halideScheduler);
        }
        Mat out = net.forward(outputLayer).clone();

        check(outDefault, out, outputLayer, l1, lInf, detectionConfThresh, "First run");

        // Test 2: change input.
        float* inpData = (float*)inp.data;
        for (int i = 0; i < inp.size[0] * inp.size[1]; ++i)
        {
            Mat slice(inp.size[2], inp.size[3], CV_32F, inpData);
            cv::flip(slice, slice, 1);
            inpData += slice.total();
        }
        netDefault.setInput(inp);
        net.setInput(inp);
        outDefault = netDefault.forward(outputLayer).clone();
        out = net.forward(outputLayer).clone();
        check(outDefault, out, outputLayer, l1, lInf, detectionConfThresh, "Second run");
    }

    void check(Mat& ref, Mat& out, const std::string& outputLayer, double l1, double lInf,
               double detectionConfThresh, const char* msg)
    {
        if (outputLayer == "detection_out")
        {
            if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
            {
                // Inference Engine produces detections terminated by a row which starts from -1.
                out = out.reshape(1, out.total() / 7);
                int numDetections = 0;
                while (numDetections < out.rows && out.at<float>(numDetections, 0) != -1)
                {
                    numDetections += 1;
                }
                out = out.rowRange(0, numDetections);
            }
            normAssertDetections(ref, out, msg, detectionConfThresh, l1, lInf);
        }
        else
            normAssert(ref, out, msg, l1, lInf);
    }

    Net net;
};

TEST_P(DNNTestNetwork, AlexNet)
{
    applyTestTag(CV_TEST_TAG_MEMORY_1GB);
    processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt",
               Size(227, 227), "prob",
               target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_alexnet.yml" :
                                             "dnn/halide_scheduler_alexnet.yml");
    expectNoFallbacksFromIE(net);
    expectNoFallbacksFromCUDA(net);
}

TEST_P(DNNTestNetwork, ResNet_50)
{
    applyTestTag(
        (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB),
        CV_TEST_TAG_DEBUG_VERYLONG
    );

    processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt",
               Size(224, 224), "prob",
               target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_resnet_50.yml" :
                                             "dnn/halide_scheduler_resnet_50.yml");
    expectNoFallbacksFromIE(net);
    expectNoFallbacksFromCUDA(net);
}

TEST_P(DNNTestNetwork, SqueezeNet_v1_1)
{
    processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt",
               Size(227, 227), "prob",
               target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_squeezenet_v1_1.yml" :
                                             "dnn/halide_scheduler_squeezenet_v1_1.yml");
    expectNoFallbacksFromIE(net);
    expectNoFallbacksFromCUDA(net);
}

TEST_P(DNNTestNetwork, GoogLeNet)
{
    applyTestTag(target == DNN_TARGET_CPU ? "" : CV_TEST_TAG_MEMORY_512MB);

    processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt",
               Size(224, 224), "prob");
    expectNoFallbacksFromIE(net);
    expectNoFallbacksFromCUDA(net);
}

TEST_P(DNNTestNetwork, Inception_5h)
{
    applyTestTag(CV_TEST_TAG_MEMORY_512MB);

    double l1 = default_l1, lInf = default_lInf;
    if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && (target == DNN_TARGET_CPU || target == DNN_TARGET_OPENCL))
    {
        l1 = 1.72e-5;
        lInf = 8e-4;
    }
    processNet("dnn/tensorflow_inception_graph.pb", "", Size(224, 224), "softmax2",
               target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_inception_5h.yml" :
                                             "dnn/halide_scheduler_inception_5h.yml",
               l1, lInf);
    expectNoFallbacksFromIE(net);
    expectNoFallbacksFromCUDA(net);
}

TEST_P(DNNTestNetwork, ENet)
{
    applyTestTag(target == DNN_TARGET_CPU ? "" : CV_TEST_TAG_MEMORY_512MB);

#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2023000000)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
    if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif
    if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
    if (backend == DNN_BACKEND_CUDA && target == DNN_TARGET_CUDA_FP16)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);
    if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_CPU_FP16)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_CPU_FP16);
    processNet("dnn/Enet-model-best.net", "", Size(512, 512), "l367_Deconvolution",
               target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_enet.yml" :
                                             "dnn/halide_scheduler_enet.yml",
               2e-5, 0.15);
    expectNoFallbacksFromCUDA(net);
}

TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe)
{
    applyTestTag(CV_TEST_TAG_MEMORY_512MB);
    if (backend == DNN_BACKEND_HALIDE)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
    Mat sample = imread(findDataFile("dnn/street.png"));
    Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
    float scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CPU_FP16) ? 1.5e-2 : 0.0;
    float iouDiff = (target == DNN_TARGET_MYRIAD) ? 0.063  : 0.0;
    float detectionConfThresh = (target == DNN_TARGET_MYRIAD) ? 0.262  : FLT_MIN;
         processNet("dnn/MobileNetSSD_deploy_19e3ec3.caffemodel", "dnn/MobileNetSSD_deploy_19e3ec3.prototxt",
                    inp, "detection_out", "", scoreDiff, iouDiff, detectionConfThresh);
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe_Different_Width_Height)
{
    if (backend == DNN_BACKEND_HALIDE)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
    // May hang on some configurations
    if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
        applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
            CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
        );
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
    // IE exception: Ngraph operation Transpose with name conv15_2_mbox_conf_perm has dynamic output shape on 0 port, but CPU plug-in supports only static shape
    if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
        applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
            CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
        );
    if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) &&
        target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#elif defined(INF_ENGINE_RELEASE)
    if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) &&
        target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif

    Mat sample = imread(findDataFile("dnn/street.png"));
    Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 560), Scalar(127.5, 127.5, 127.5), false);
    float scoreDiff = 0.0, iouDiff = 0.0;
    if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CPU_FP16)
    {
        scoreDiff = 0.029;
        iouDiff = 0.09;
    }
    else if (target == DNN_TARGET_CUDA_FP16)
    {
        scoreDiff = 0.03;
        iouDiff = 0.08;
    }
    processNet("dnn/MobileNetSSD_deploy_19e3ec3.caffemodel", "dnn/MobileNetSSD_deploy_19e3ec3.prototxt",
                inp, "detection_out", "", scoreDiff, iouDiff);
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow)
{
    applyTestTag((target == DNN_TARGET_CPU || target == DNN_TARGET_CPU_FP16) ? "" : CV_TEST_TAG_MEMORY_512MB);
    if (backend == DNN_BACKEND_HALIDE)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);

    Mat sample = imread(findDataFile("dnn/street.png"));
    Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false);
    float detectionConfThresh = (target == DNN_TARGET_MYRIAD) ? 0.216 : 0.2;
    float scoreDiff = 0.0, iouDiff = 0.0;
    if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CPU_FP16)
    {
        scoreDiff = 0.095;
        iouDiff = 0.09;
    }
    else if (target == DNN_TARGET_CUDA_FP16)
    {
        scoreDiff = 0.007;
        iouDiff = 0.08;
    }
    processNet("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", "dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt",
               inp, "detection_out", "", scoreDiff, iouDiff, detectionConfThresh);
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow_Different_Width_Height)
{
    if (backend == DNN_BACKEND_HALIDE)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
    if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) &&
        target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
#endif
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019020000)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif

    Mat sample = imread(findDataFile("dnn/street.png"));
    Mat inp = blobFromImage(sample, 1.0f, Size(300, 560), Scalar(), false);
    float scoreDiff = 0.0, iouDiff = 0.0;
    if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CPU_FP16)
    {
        scoreDiff = 0.013;
        iouDiff = 0.06;
    }
    else if (target == DNN_TARGET_CUDA_FP16)
    {
        scoreDiff = 0.007;
        iouDiff = 0.06;
    }
    processNet("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", "dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt",
               inp, "detection_out", "", scoreDiff, iouDiff);
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, MobileNet_SSD_v2_TensorFlow)
{
    applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
    if (backend == DNN_BACKEND_HALIDE)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);

    Mat sample = imread(findDataFile("dnn/street.png"));
    Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false);
    float scoreDiff = 2e-5, iouDiff = 0.0;
    if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CPU_FP16)
    {
        scoreDiff = 0.013;
        iouDiff = 0.062;
    }
    else if (target == DNN_TARGET_CUDA_FP16)
    {
        scoreDiff = 0.02;
        iouDiff = 0.07;
    }
    processNet("dnn/ssd_mobilenet_v2_coco_2018_03_29.pb", "dnn/ssd_mobilenet_v2_coco_2018_03_29.pbtxt",
               inp, "detection_out", "", scoreDiff, iouDiff, 0.25);
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, SSD_VGG16)
{
    applyTestTag(
        CV_TEST_TAG_MEMORY_2GB,
        CV_TEST_TAG_LONG,
        CV_TEST_TAG_DEBUG_VERYLONG
    );
    if (backend == DNN_BACKEND_HALIDE && target == DNN_TARGET_CPU)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);  // TODO HALIDE_CPU

    Mat sample = imread(findDataFile("dnn/street.png"));
    Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false);

    float scoreDiff = 0.0, iouDiff = 0.0;
    if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_CPU_FP16)
    {
        scoreDiff = 0.04;
    }
    else if (target == DNN_TARGET_MYRIAD)
    {
        scoreDiff = 0.0325;
        iouDiff = 0.032;
    }
    else if (target == DNN_TARGET_CUDA_FP16)
    {
        scoreDiff = 0.03;
        iouDiff = 0.13;
    }

    processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel",
               "dnn/ssd_vgg16.prototxt", inp, "detection_out", "", scoreDiff,
               iouDiff, 0.2, false);
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, OpenPose_pose_coco)
{
    applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB),
                 CV_TEST_TAG_DEBUG_LONG);
    if (backend == DNN_BACKEND_HALIDE)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
            && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif

    const float l1 = (target == DNN_TARGET_MYRIAD) ? 0.009 : 0.0;
    const float lInf = (target == DNN_TARGET_MYRIAD) ? 0.09 : 0.0;
    processNet("dnn/openpose_pose_coco.caffemodel", "dnn/openpose_pose_coco.prototxt",
               Size(46, 46), "", "", l1, lInf);
    expectNoFallbacksFromIE(net);
    expectNoFallbacksFromCUDA(net);
}

TEST_P(DNNTestNetwork, OpenPose_pose_mpi)
{
    applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB),
                 CV_TEST_TAG_DEBUG_VERYLONG);
    if (backend == DNN_BACKEND_HALIDE)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
            && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif

    // output range: [-0.001, 0.97]
    const float l1 = (target == DNN_TARGET_MYRIAD) ? 0.02 : 0.0;
    const float lInf = (target == DNN_TARGET_MYRIAD || target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_CPU_FP16) ? 0.2 : 0.0;
    processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi.prototxt",
               Size(46, 46), "", "", l1, lInf);
    expectNoFallbacksFromIE(net);
    expectNoFallbacksFromCUDA(net);
}

TEST_P(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages)
{
    applyTestTag(CV_TEST_TAG_LONG, CV_TEST_TAG_MEMORY_1GB);
    if (backend == DNN_BACKEND_HALIDE)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
            && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif

    // The same .caffemodel but modified .prototxt
    // See https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/pose/poseParameters.cpp
    processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi_faster_4_stages.prototxt",
               Size(46, 46));
    expectNoFallbacksFromIE(net);
    expectNoFallbacksFromCUDA(net);
}

TEST_P(DNNTestNetwork, OpenFace)
{
#if defined(INF_ENGINE_RELEASE)
#if INF_ENGINE_VER_MAJOR_EQ(2018050000)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
#endif
    if (backend == DNN_BACKEND_HALIDE)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
    const float l1 = (target == DNN_TARGET_MYRIAD) ? 0.0024 : 0.0;
    const float lInf = (target == DNN_TARGET_MYRIAD) ? 0.0071 : 0.0;
    processNet("dnn/openface_nn4.small2.v1.t7", "", Size(96, 96), "", "", l1, lInf);

    expectNoFallbacksFromCUDA(net);
}

TEST_P(DNNTestNetwork, opencv_face_detector)
{
    if (backend == DNN_BACKEND_HALIDE)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
    Mat img = imread(findDataFile("gpu/lbpcascade/er.png"));
    Mat inp = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false);
    processNet("dnn/opencv_face_detector.caffemodel", "dnn/opencv_face_detector.prototxt",
               inp, "detection_out");
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, Inception_v2_SSD_TensorFlow)
{
    applyTestTag(
        (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB),
        CV_TEST_TAG_DEBUG_VERYLONG
    );
#if defined(INF_ENGINE_RELEASE)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD
            && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
#endif
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019020000)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
    if (backend == DNN_BACKEND_HALIDE)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
    Mat sample = imread(findDataFile("dnn/street.png"));
    Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false);
    float scoreDiff = 0.0, iouDiff = 0.0;
    if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CPU_FP16)
    {
        scoreDiff = 0.02;
        iouDiff = 0.1;
    }
    else if (target == DNN_TARGET_CUDA_FP16)
    {
        scoreDiff = 0.015;
        iouDiff = 0.08;
    }
    processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "dnn/ssd_inception_v2_coco_2017_11_17.pbtxt",
               inp, "detection_out", "", scoreDiff, iouDiff);
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, DenseNet_121)
{
    applyTestTag(CV_TEST_TAG_MEMORY_512MB);
    if (backend == DNN_BACKEND_HALIDE)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
    // Reference output values are in range [-3.807, 4.605]
    float l1 = 0.0, lInf = 0.0;
    if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_CPU_FP16)
    {
        l1 = 2e-2;
        lInf = 9e-2;
        if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
            lInf = 0.1f;
    }
    else if (target == DNN_TARGET_MYRIAD)
    {
        l1 = 0.1;
        lInf = 0.6;
    }
    else if (target == DNN_TARGET_CUDA_FP16)
    {
        l1 = 0.008;
        lInf = 0.06;
    }
    processNet("dnn/DenseNet_121.caffemodel", "dnn/DenseNet_121.prototxt", Size(224, 224), "", "", l1, lInf);
    if (target != DNN_TARGET_MYRIAD || getInferenceEngineVPUType() != CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
        expectNoFallbacksFromIE(net);
    expectNoFallbacksFromCUDA(net);
}

TEST_P(DNNTestNetwork, FastNeuralStyle_eccv16)
{
    applyTestTag(CV_TEST_TAG_MEMORY_512MB, CV_TEST_TAG_DEBUG_VERYLONG);

    if (backend == DNN_BACKEND_HALIDE)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
    if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
    if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);

#if defined(INF_ENGINE_RELEASE)
#if INF_ENGINE_VER_MAJOR_LE(2018050000)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif
#endif

    Mat img = imread(findDataFile("dnn/googlenet_1.png"));
    Mat inp = blobFromImage(img, 1.0, Size(320, 240), Scalar(103.939, 116.779, 123.68), false, false);
    // Output image has values in range [-143.526, 148.539].
    float l1 = 2e-4, lInf = 2.4e-3;
    if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
    {
        l1 = 0.4;
        lInf = 7.46;
    }
    else if (target == DNN_TARGET_CUDA_FP16)
    {
        l1 = 0.3;
        lInf = 7.6;
    }
    else if (target == DNN_TARGET_CPU_FP16)
    {
        l1 = 0.4;
        lInf = 22.;
    }
    else if (target == DNN_TARGET_VULKAN)
    {
        l1 = 0.4;
        lInf = 7.46;
    }

#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
    {
        l1 = 5e-3;
        lInf = 5e-3;
    }
    if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
    {
        lInf = 25;
    }
#endif


    processNet("dnn/fast_neural_style_eccv16_starry_night.t7", "", inp, "", "", l1, lInf);
#if defined(HAVE_INF_ENGINE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
    expectNoFallbacksFromIE(net);
#endif
    expectNoFallbacksFromCUDA(net);
}

INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, dnnBackendsAndTargets(true, true, false, true, true));

/*
    Backend tests of layers
*/

static void testLayer(Mat& input, Net& net, Backend backendId, Target targetId, bool skipCheck = false, bool randInput = true, double l1 = 0.0, double lInf = 0.0)
{
    DNNTestLayer::checkBackend(backendId, targetId);
    if (randInput)
        randu(input, -1.0f, 1.0f);

    net.setInput(input);
    net.setPreferableBackend(DNN_BACKEND_OPENCV);
    Mat outputDefault = net.forward().clone();

    net.setPreferableBackend(backendId);
    net.setPreferableTarget(targetId);
    Mat output = net.forward().clone();

    if (skipCheck)
        return;

    double default_l1, default_lInf;
    DNNTestLayer::getDefaultThresholds(backendId, targetId, &default_l1, &default_lInf);
    if (l1 == 0.0)
        l1 = default_l1;
    if (lInf == 0.0)
        lInf = default_lInf;
    normAssert(outputDefault, output, "", l1, lInf);
    if (cvtest::debugLevel > 0 || testing::Test::HasFailure())
    {
        std::cout << "l1=" << l1 << "  lInf=" << lInf << std::endl;
        std::cout << outputDefault.reshape(1, outputDefault.total()).t() << std::endl;
        std::cout << output.reshape(1, outputDefault.total()).t() << std::endl;
    }
}

static void testLayer(LayerParams& params, Mat& input, Backend backendId, Target targetId, bool skipCheck = false, double l1 = 0.0, double lInf = 0.0)
{
    Net net;
    net.addLayerToPrev(params.name, params.type, params);
    testLayer(input, net, backendId, targetId, skipCheck, true, l1, lInf);
}

class Test_layers_backends : public DNNTestLayer {};

////////////////////////////////////////////////////////////////////////////////
// Padding
////////////////////////////////////////////////////////////////////////////////
TEST_P(Test_layers_backends, Padding)
{
    static const int kNumRuns = 10;
    std::vector<int> paddings(8);
    cv::RNG& rng = cv::theRNG();
    for (int t = 0; t < kNumRuns; ++t)
    {
        for (int i = 0; i < paddings.size(); ++i)
            paddings[i] = rng(5);

        LayerParams lp;
        lp.set("paddings", DictValue::arrayInt<int*>(&paddings[0], paddings.size()));
        lp.type = "Padding";
        lp.name = "testLayer";

        int sz[] = {1 + (int)rng(10), 1 + (int)rng(10), 1 + (int)rng(10), 1 + (int)rng(10)};
        Mat input(4, &sz[0], CV_32F);
        testLayer(lp, input, backend, target);
    }
}

////////////////////////////////////////////////////////////////////////////////
// Convolution
////////////////////////////////////////////////////////////////////////////////
typedef TestWithParam<tuple<Vec3i, Size, Size, Size, Size, Size, bool, tuple<Backend, Target> > > Convolution;
TEST_P(Convolution, Accuracy)
{
    int inChannels = get<0>(GetParam())[0];
    int outChannels = get<0>(GetParam())[1];
    int group = get<0>(GetParam())[2];
    Size inSize = get<1>(GetParam());
    Size kernel = get<2>(GetParam());
    Size stride = get<3>(GetParam());
    Size pad = get<4>(GetParam());
    Size dilation = get<5>(GetParam());
    bool hasBias = get<6>(GetParam());
    Backend backendId = get<0>(get<7>(GetParam()));
    Target targetId = get<1>(get<7>(GetParam()));

    bool skipCheck = false;

    int sz[] = {outChannels, inChannels / group, kernel.height, kernel.width};
    Mat weights(4, &sz[0], CV_32F);
    randu(weights, -1.0f, 1.0f);

    LayerParams lp;
    lp.set("kernel_w", kernel.width);
    lp.set("kernel_h", kernel.height);
    lp.set("pad_w", pad.width);
    lp.set("pad_h", pad.height);
    lp.set("stride_w", stride.width);
    lp.set("stride_h", stride.height);
    lp.set("dilation_w", dilation.width);
    lp.set("dilation_h", dilation.height);
    lp.set("num_output", outChannels);
    lp.set("group", group);
    lp.set("bias_term", hasBias);
    lp.type = "Convolution";
    lp.name = "testLayer";
    lp.blobs.push_back(weights);
    if (hasBias)
    {
        Mat bias(1, outChannels, CV_32F);
        randu(bias, -1.0f, 1.0f);
        lp.blobs.push_back(bias);
    }
    int inpSz[] = {1, inChannels, inSize.height, inSize.width};
    Mat input(4, &inpSz[0], CV_32F);
    testLayer(lp, input, backendId, targetId, skipCheck);
    if (skipCheck)
        throw SkipTestException("Skip checks in unstable test");
}

INSTANTIATE_TEST_CASE_P(Layer_Test_Backends, Convolution, testing::Combine(
/*in channels, out channels, group*/
             testing::Values(Vec3i(6, 4, 1), Vec3i(6, 9, 1),
                    Vec3i(6, 4, 2), Vec3i(6, 9, 3)),
/*in size*/  testing::Values(Size(5, 6)),
/*kernel*/   testing::Values(Size(3, 1), Size(1, 3)),
/*stride*/   testing::Values(Size(1, 1), Size(2, 2)),
/*pad*/      testing::Values(Size(1, 0), Size(0, 1)),
/*dilation*/ testing::Values(Size(1, 1), Size(2, 2)),
/*has bias*/ testing::Bool(),
             dnnBackendsAndTargets()
));

////////////////////////////////////////////////////////////////////////////////
// Deconvolution
////////////////////////////////////////////////////////////////////////////////
typedef TestWithParam<tuple<Vec3i, Size, Size, Size, Size, Vec4i, bool, tuple<Backend, Target> > > Deconvolution;
TEST_P(Deconvolution, Accuracy)
{
    int inChannels = get<0>(GetParam())[0];
    int outChannels = get<0>(GetParam())[1];
    int group = get<0>(GetParam())[2];
    Size inSize = get<1>(GetParam());
    Size kernel = get<2>(GetParam());
    Size pad = get<3>(GetParam());
    Size dilation = get<4>(GetParam());
    Size stride = Size(get<5>(GetParam())[0], get<5>(GetParam())[1]);
    Size adjPad = Size(get<5>(GetParam())[2], get<5>(GetParam())[3]);
    bool hasBias = get<6>(GetParam());
    Backend backendId = get<0>(get<7>(GetParam()));
    Target targetId = get<1>(get<7>(GetParam()));

#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16)
            && inChannels == 6 && outChannels == 4 && group == 1
            && kernel == Size(3, 1) && pad == Size(0, 1)
            && stride == Size(1, 1) && dilation == Size(1, 1))
        applyTestTag(targetId == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
            CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
        );
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16)
            && inChannels == 6 && outChannels == 4 && group == 1
            && kernel == Size(1, 3) && pad == Size(1, 0)
            && stride == Size(1, 1) && dilation == Size(1, 1))
        applyTestTag(targetId == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
            CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
        );
#endif

#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD
            && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
            && inChannels == 6 && outChannels == 4 && group == 1
            && kernel == Size(1, 3) && pad == Size(1, 0)
            && stride == Size(1, 1) && dilation == Size(1, 1))
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
#endif

    if (targetId == DNN_TARGET_CUDA_FP16)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);

    int sz[] = {inChannels, outChannels / group, kernel.height, kernel.width};
    Mat weights(4, &sz[0], CV_32F);
    randu(weights, -1.0f, 1.0f);

    LayerParams lp;
    lp.set("kernel_w", kernel.width);
    lp.set("kernel_h", kernel.height);
    lp.set("pad_w", pad.width);
    lp.set("pad_h", pad.height);
    lp.set("stride_w", stride.width);
    lp.set("stride_h", stride.height);
    lp.set("dilation_w", dilation.width);
    lp.set("dilation_h", dilation.height);
    lp.set("adj_w", adjPad.width);
    lp.set("adj_h", adjPad.height);
    lp.set("num_output", outChannels);
    lp.set("group", group);
    lp.set("bias_term", hasBias);
    lp.type = "Deconvolution";
    lp.name = "testLayer";
    lp.blobs.push_back(weights);
    if (hasBias)
    {
        Mat bias(1, outChannels, CV_32F);
        randu(bias, -1.0f, 1.0f);
        lp.blobs.push_back(bias);
    }
    int inpSz[] = {1, inChannels, inSize.height, inSize.width};
    Mat input(4, &inpSz[0], CV_32F);
    testLayer(lp, input, backendId, targetId);
}

INSTANTIATE_TEST_CASE_P(Layer_Test_Backends, Deconvolution, testing::Combine(
/*in channels, out channels, group*/
             testing::Values(Vec3i(6, 4, 1), Vec3i(6, 9, 3)),
/*in size*/  testing::Values(Size(5, 6)),
/*kernel*/   testing::Values(Size(3, 1), Size(1, 3)),
/*pad*/      testing::Values(Size(1, 0), Size(0, 1)),
/*dilation*/ testing::Values(Size(1, 1)),
/*stride, adj. pad*/ testing::Values(Vec4i(1,1, 0,0), Vec4i(2,2, 1,0), Vec4i(1,2, 0,1)),
/*has bias*/ testing::Bool(),
             dnnBackendsAndTargets()
));

////////////////////////////////////////////////////////////////////////////////
// LRN
////////////////////////////////////////////////////////////////////////////////
typedef TestWithParam<tuple<Vec3i, int, Vec3f, bool, std::string, tuple<Backend, Target> > > LRN;
TEST_P(LRN, Accuracy)
{
    int inChannels = get<0>(GetParam())[0];
    Size inSize = Size(get<0>(GetParam())[1], get<0>(GetParam())[2]);
    int localSize = get<1>(GetParam());
    float alpha = get<2>(GetParam())[0];
    float beta = get<2>(GetParam())[1];
    float bias = get<2>(GetParam())[2];
    bool normBySize = get<3>(GetParam());
    std::string nrmType = get<4>(GetParam());
    Backend backendId = get<0>(get<5>(GetParam()));
    Target targetId = get<1>(get<5>(GetParam()));

#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
    if ((inSize.width == 5 || inSize.height == 5) && targetId == DNN_TARGET_MYRIAD &&
        nrmType == "ACROSS_CHANNELS")
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
#endif

    LayerParams lp;
    lp.set("norm_region", nrmType);
    lp.set("local_size", localSize);
    lp.set("alpha", alpha);
    lp.set("beta", beta);
    lp.set("bias", bias);
    lp.set("norm_by_size", normBySize);
    lp.type = "LRN";
    lp.name = "testLayer";

    int sz[] = {1, inChannels, inSize.height, inSize.width};
    Mat input(4, &sz[0], CV_32F);

    double l1 = 0.0, lInf = 0.0;
    // The OpenCL kernels use the native_ math functions which have
    // implementation defined accuracy, so we use relaxed thresholds. See
    // https://github.com/opencv/opencv/issues/9821 for more details.
    if (targetId == DNN_TARGET_OPENCL)
    {
        l1 = 0.01;
        lInf = 0.01;
    }
    testLayer(lp, input, backendId, targetId, false, l1, lInf);
}

INSTANTIATE_TEST_CASE_P(Layer_Test_Backends, LRN, testing::Combine(
/*input ch,w,h*/ testing::Values(Vec3i(6, 5, 8), Vec3i(7, 11, 6)),
/*local size*/   testing::Values(3, 5),
                 testing::Values(Vec3f(0.9f, 1.0f, 1.1f), Vec3f(0.9f, 1.1f, 1.0f),
/*alpha, beta, bias*/   Vec3f(1.0f, 0.9f, 1.1f), Vec3f(1.0f, 1.1f, 0.9f),
                        Vec3f(1.1f, 0.9f, 1.0f), Vec3f(1.1f, 1.0f, 0.9f)),
/*norm_by_size*/ testing::Bool(),
/*norm_type*/    testing::Values("ACROSS_CHANNELS", "WITHIN_CHANNEL"),
                 dnnBackendsAndTargets()
));

////////////////////////////////////////////////////////////////////////////////
// Average pooling
////////////////////////////////////////////////////////////////////////////////
typedef TestWithParam<tuple<int, Size, Size, Size, tuple<Backend, Target> > > AvePooling;
TEST_P(AvePooling, Accuracy)
{
    int inChannels = get<0>(GetParam());
    Size outSize = get<1>(GetParam());;  // Input size will be computed from parameters.
    Size kernel = get<2>(GetParam());
    Size stride = get<3>(GetParam());
    Backend backendId = get<0>(get<4>(GetParam()));
    Target targetId = get<1>(get<4>(GetParam()));

#if defined(INF_ENGINE_RELEASE)
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD
            && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
            && kernel == Size(1, 1) && (stride == Size(1, 1) || stride == Size(2, 2)))
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
#endif

    const int inWidth = (outSize.width - 1) * stride.width + kernel.width;
    const int inHeight = (outSize.height - 1) * stride.height + kernel.height;

    LayerParams lp;
    lp.set("pool", "ave");
    lp.set("kernel_w", kernel.width);
    lp.set("kernel_h", kernel.height);
    lp.set("stride_w", stride.width);
    lp.set("stride_h", stride.height);
    lp.type = "Pooling";
    lp.name = "testLayer";

    int sz[] = {1, inChannels, inHeight, inWidth};
    Mat input(4, &sz[0], CV_32F);
    testLayer(lp, input, backendId, targetId);
}

INSTANTIATE_TEST_CASE_P(Layer_Test_Backends, AvePooling, testing::Combine(
/*in channels*/ testing::Values(3, 4),
/*out size*/    testing::Values(Size(1, 1), Size(2, 2), Size(3, 2), Size(4, 7)),
/*kernel*/      testing::Values(Size(1, 1), Size(2, 2), Size(3, 3), Size(3, 2)),
/*stride*/      testing::Values(Size(1, 1), Size(2, 2), Size(3, 2)),
                dnnBackendsAndTargets()
));

////////////////////////////////////////////////////////////////////////////////
// Maximum pooling
////////////////////////////////////////////////////////////////////////////////
typedef TestWithParam<tuple<int, Size, Size, Size, Size, tuple<Backend, Target> > > MaxPooling;
TEST_P(MaxPooling, Accuracy)
{
    int inChannels = get<0>(GetParam());
    Size inSize = get<1>(GetParam());
    Size kernel = get<2>(GetParam());
    Size stride = get<3>(GetParam());
    Size pad = get<4>(GetParam());
    Backend backendId = get<0>(get<5>(GetParam()));
    Target targetId = get<1>(get<5>(GetParam()));

    // https://github.com/openvinotoolkit/openvino/issues/18731
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && stride != Size(1, 1)) {
        int ow = ceil(static_cast<float>(inSize.width + 2 * pad.width - kernel.width) / stride.width);
        int oh = ceil(static_cast<float>(inSize.height + 2 * pad.height - kernel.height) / stride.height);
        if (ow * stride.width >= inSize.width + pad.width || oh * stride.height >= inSize.height + pad.height)
            applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
    }

#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD
            && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
            && (stride == Size(1, 1) || stride == Size(2, 2))
            && (pad == Size(0, 1) || pad == Size(1, 1))
    )
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif

#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_MYRIAD)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif

    LayerParams lp;
    lp.set("pool", "max");
    lp.set("kernel_w", kernel.width);
    lp.set("kernel_h", kernel.height);
    lp.set("stride_w", stride.width);
    lp.set("stride_h", stride.height);
    lp.set("pad_w", pad.width);
    lp.set("pad_h", pad.height);
    lp.type = "Pooling";
    lp.name = "testLayer";

    int sz[] = {1, inChannels, inSize.height, inSize.width};
    Mat input(4, &sz[0], CV_32F);
    testLayer(lp, input, backendId, targetId);
}

INSTANTIATE_TEST_CASE_P(Layer_Test_Backends, MaxPooling, testing::Combine(
/*in channels*/ testing::Values(3, 4),
/*in size*/     testing::Values(Size(5, 5), Size(7, 6)),
/*kernel*/      testing::Values(Size(2, 2), Size(3, 3), Size(3, 2)),
/*stride*/      testing::Values(Size(1, 1), Size(2, 2), Size(3, 2)),
/*pad*/         testing::Values(Size(0, 0), Size(1, 1), Size(0, 1)),
                dnnBackendsAndTargets()
));

////////////////////////////////////////////////////////////////////////////////
// Fully-connected
////////////////////////////////////////////////////////////////////////////////
typedef TestWithParam<tuple<int, int, Size, int, bool, tuple<Backend, Target> > > FullyConnected;
TEST_P(FullyConnected, Accuracy)
{
    int batch = get<0>(GetParam());
    int inChannels = get<1>(GetParam());
    Size inSize = get<2>(GetParam());
    int outChannels = get<3>(GetParam());
    bool hasBias = get<4>(GetParam());
    Backend backendId = get<0>(get<5>(GetParam()));
    Target targetId = get<1>(get<5>(GetParam()));
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
    if ((backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
         backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && (targetId == DNN_TARGET_OPENCL_FP16 ||
       (targetId == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X))) {
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
    }
#endif
    // https://github.com/openvinotoolkit/openvino/issues/19436
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL_FP16 && batch == 16)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2023000000)
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL && batch == 16)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL);
#endif

    Mat weights(outChannels, inChannels * inSize.height * inSize.width, CV_32F);
    randu(weights, -1.0f, 1.0f);

    Mat bias(1, outChannels, CV_32F);
    randu(bias, -1.0f, 1.0f);

    LayerParams lp;
    lp.set("num_output", outChannels);
    lp.set("bias_term", hasBias);
    lp.blobs.push_back(weights);
    lp.blobs.push_back(bias);
    lp.type = "InnerProduct";
    lp.name = "testLayer";

    int sz[] = {batch, inChannels, inSize.height, inSize.width};
    Mat input(4, &sz[0], CV_32F);

    double l1 = 0.0;
    double lInf = 0.0;
#if defined(INF_ENGINE_RELEASE)
    if (targetId == DNN_TARGET_MYRIAD)
    {
        l1 = 0.015;
        lInf = 0.025;
    }
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL_FP16)
    {
        l1 = 0.01;
        if (INF_ENGINE_VER_MAJOR_GE(2023000000))
            lInf = 0.016;
    }
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL)
    {
        l1 = 5e-3;
        lInf = INF_ENGINE_VER_MAJOR_GE(2023000000) ? 0.016 : 7e-3;
    }
#endif
    if (targetId == DNN_TARGET_CUDA_FP16)
        l1 = 0.015;

    testLayer(lp, input, backendId, targetId, false, l1, lInf);
}

INSTANTIATE_TEST_CASE_P(Layer_Test_Backends, FullyConnected, testing::Combine(
/*batch*/        testing::Values(1, 2, 4, 8, 16),
/*in channels*/  testing::Values(3, 4),
/*in size*/      testing::Values(Size(5, 4), Size(4, 5), Size(1, 1)),
/*out channels*/ testing::Values(3, 4),
/*has bias*/     testing::Bool(),
                 dnnBackendsAndTargets()
));

////////////////////////////////////////////////////////////////////////////////
// SoftMax
////////////////////////////////////////////////////////////////////////////////
typedef TestWithParam<tuple<int,  tuple<Backend, Target> > > SoftMax;
TEST_P(SoftMax, Accuracy)
{
    int inChannels = get<0>(GetParam());
    Backend backendId = get<0>(get<1>(GetParam()));
    Target targetId = get<1>(get<1>(GetParam()));
    LayerParams lp;
    lp.type = "Softmax";
    lp.name = "testLayer";

    int sz[] = {1, inChannels, 1, 1};
    Mat input(4, &sz[0], CV_32F);
    testLayer(lp, input, backendId, targetId);
}

INSTANTIATE_TEST_CASE_P(Layer_Test_Backends, SoftMax, testing::Combine(
    testing::Values(3, 4, 5, 1024),
    dnnBackendsAndTargets()
));

//////////////////////////////////////////////////////////////////////////////
// Max pooling - unpooling
//////////////////////////////////////////////////////////////////////////////
TEST_P(Test_layers_backends, MaxPoolUnpool)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2023000000)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
    if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
#endif

    LayerParams pool;
    pool.set("pool", "max");
    pool.set("kernel_w", 2);
    pool.set("kernel_h", 2);
    pool.set("stride_w", 2);
    pool.set("stride_h", 2);
    pool.set("pad_w", 0);
    pool.set("pad_h", 0);
    pool.type = "Pooling";
    pool.name = "testPool";

    LayerParams unpool;
    unpool.set("pool_k_w", 2);
    unpool.set("pool_k_h", 2);
    unpool.set("pool_stride_w", 2);
    unpool.set("pool_stride_h", 2);
    unpool.set("pool_pad_w", 0);
    unpool.set("pool_pad_h", 0);
    unpool.type = "MaxUnpool";
    unpool.name = "testUnpool";

    Net net;
    int poolId = net.addLayer(pool.name, pool.type, pool);
    net.connect(0, 0, poolId, 0);

    int unpoolId = net.addLayer(unpool.name, unpool.type, unpool);
    net.connect(poolId, 0, unpoolId, 0);
    net.connect(poolId, 1, unpoolId, 1);

    int sz[] = {1, 1, 4, 4};
    Mat input(4, &sz[0], CV_32F);
    testLayer(input, net, backend, target);
}

////////////////////////////////////////////////////////////////////////////////
// AvePooling + in-place layers
////////////////////////////////////////////////////////////////////////////////
static const int kNumChannels = 3;

void testInPlaceActivation(LayerParams& lp, Backend backendId, Target targetId, double l1 = 0.0, double lInf = 0.0)
{
    EXPECT_FALSE(lp.name.empty());

    LayerParams pool;
    pool.set("pool", "ave");
    pool.set("kernel_w", 2);
    pool.set("kernel_h", 2);
    pool.set("stride_w", 2);
    pool.set("stride_h", 2);
    pool.type = "Pooling";
    pool.name = "ave_pool";

    Net net;
    int poolId = net.addLayer(pool.name, pool.type, pool);
    net.connect(0, 0, poolId, 0);
    net.addLayerToPrev(lp.name, lp.type, lp);

    int sz[] = {1, kNumChannels, 10, 10};
    Mat input(4, &sz[0], CV_32F);
    testLayer(input, net, backendId, targetId, false, true, l1, lInf);
}

typedef TestWithParam<tuple<bool, bool, float, tuple<Backend, Target> > > BatchNorm;
TEST_P(BatchNorm, Accuracy)
{
    bool hasWeights = get<0>(GetParam());
    bool hasBias = get<1>(GetParam());
    float epsilon = get<2>(GetParam());
    Backend backendId = get<0>(get<3>(GetParam()));
    Target targetId = get<1>(get<3>(GetParam()));

    LayerParams lp;
    lp.set("has_weight", hasWeights);
    lp.set("has_bias", hasBias);
    lp.set("eps", epsilon);
    lp.type = "BatchNorm";
    lp.name = "testLayer";

    lp.blobs.reserve(4);
    for (int i = 0; i < 3; ++i)
        lp.blobs.push_back(Mat(1, kNumChannels, CV_32F));
    if (hasBias || hasWeights)
        lp.blobs.push_back(Mat(1, kNumChannels, CV_32F));

    for (int i = 0; i < lp.blobs.size(); ++i)
        randu(lp.blobs[i], 0.0f, 1.0f);

    testInPlaceActivation(lp, backendId, targetId);
}

INSTANTIATE_TEST_CASE_P(Layer_Test_Backends, BatchNorm, testing::Combine(
/*has weights*/ testing::Bool(),
/*has bias*/    testing::Bool(),
/*epsilon*/     testing::Values(1e-3f, 1e-5f),
                dnnBackendsAndTargets()
));

typedef TestWithParam<tuple<float, tuple<Backend, Target> > > ReLU;
TEST_P(ReLU, Accuracy)
{
    float negativeSlope = get<0>(GetParam());
    Backend backendId = get<0>(get<1>(GetParam()));
    Target targetId = get<1>(get<1>(GetParam()));

#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019020000)
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD && negativeSlope < 0)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif

    LayerParams lp;
    lp.set("negative_slope", negativeSlope);
    lp.type = "ReLU";
    lp.name = "testLayer";
    testInPlaceActivation(lp, backendId, targetId);
}

INSTANTIATE_TEST_CASE_P(Layer_Test_Backends, ReLU, testing::Combine(
/*negative slope*/ testing::Values(2.0f, 0.3f, -0.1f, 0.0f),
                   dnnBackendsAndTargets()
));

typedef TestWithParam<tuple<std::string, tuple<Backend, Target> > > NoParamActivation;
TEST_P(NoParamActivation, Accuracy)
{
    Backend backendId = get<0>(get<1>(GetParam()));
    Target targetId = get<1>(get<1>(GetParam()));
    std::string layer_type = get<0>(GetParam());

    LayerParams lp;
    lp.type = layer_type;
    lp.name = "testLayer";
    testInPlaceActivation(lp, backendId, targetId);
}
INSTANTIATE_TEST_CASE_P(Layer_Test_Backends, NoParamActivation, testing::Combine(
/*type*/ testing::Values("TanH", "Sigmoid", "AbsVal", "BNLL", "Swish", "Mish"),
         dnnBackendsAndTargets()
));

typedef TestWithParam<tuple<Vec3f, tuple<Backend, Target> > > Power;
TEST_P(Power, Accuracy)
{
    float power = get<0>(GetParam())[0];
    float scale = get<0>(GetParam())[1];
    float shift = get<0>(GetParam())[2];
    Backend backendId = get<0>(get<1>(GetParam()));
    Target targetId = get<1>(get<1>(GetParam()));

    LayerParams lp;
    lp.set("power", power);
    lp.set("scale", scale);
    lp.set("shift", shift);
    lp.type = "Power";
    lp.name = "testLayer";
    testInPlaceActivation(lp, backendId, targetId);
}

INSTANTIATE_TEST_CASE_P(Layer_Test_Backends, Power, testing::Combine(
/*power, scale, shift*/ testing::Values(Vec3f(0.9f, 1.0f, 1.1f), Vec3f(0.9f, 1.1f, 1.0f),
                               Vec3f(1.0f, 0.9f, 1.1f), Vec3f(1.0f, 1.1f, 0.9f),
                               Vec3f(1.1f, 0.9f, 1.0f), Vec3f(1.1f, 1.0f, 0.9f)),
                        dnnBackendsAndTargets()
));

typedef TestWithParam<tuple<Vec3f, tuple<Backend, Target> > > Exp;
TEST_P(Exp, Accuracy)
{
    float base = get<0>(GetParam())[0];
    float scale = get<0>(GetParam())[1];
    float shift = get<0>(GetParam())[2];
    Backend backendId = get<0>(get<1>(GetParam()));
    Target targetId = get<1>(get<1>(GetParam()));

    LayerParams lp;
    lp.set("base", base);
    lp.set("scale", scale);
    lp.set("shift", shift);
    lp.type = "Exp";
    lp.name = "testLayer";
    testInPlaceActivation(lp, backendId, targetId);
}

INSTANTIATE_TEST_CASE_P(Layer_Test_Backends, Exp, testing::Combine(
/*base, scale, shift*/ testing::Values(Vec3f(0.9f, -1.0f, 1.1f), Vec3f(0.9f, 1.1f, -1.0f),
                              Vec3f(-1.0f, 0.9f, 1.1f), Vec3f(-1.0f, 1.1f, 0.9f),
                              Vec3f(1.1f, 0.9f, -1.0f), Vec3f(1.1f, -1.0f, 0.9f)),
                       dnnBackendsAndTargets()
));

TEST_P(Test_layers_backends, ChannelsPReLU)
{
    LayerParams lp;
    lp.type = "ChannelsPReLU";
    lp.name = "testLayer";
    lp.blobs.push_back(Mat(1, kNumChannels, CV_32F));
    randu(lp.blobs[0], -1.0f, 1.0f);

    testInPlaceActivation(lp, backend, target);
}

typedef TestWithParam<tuple<bool, tuple<Backend, Target> > > Scale;
TEST_P(Scale, Accuracy)
{
    bool hasBias = get<0>(GetParam());
    Backend backendId = get<0>(get<1>(GetParam()));
    Target targetId = get<1>(get<1>(GetParam()));

    LayerParams lp;
    lp.set("bias_term", hasBias);
    lp.type = "Scale";
    lp.name = "testLayer";
    lp.blobs.push_back(Mat(1, kNumChannels, CV_32F));
    randu(lp.blobs[0], -1.0f, 1.0f);
    if (hasBias)
    {
        lp.blobs.push_back(Mat(1, kNumChannels, CV_32F));
        randu(lp.blobs[1], -1.0f, 1.0f);
    }
    testInPlaceActivation(lp, backendId, targetId);
}

INSTANTIATE_TEST_CASE_P(Layer_Test_Backends, Scale, testing::Combine(
    testing::Bool(),
    dnnBackendsAndTargets()
));

////////////////////////////////////////////////////////////////////////////////
// Concat layer
////////////////////////////////////////////////////////////////////////////////
//
// input --- conv --- concat --- output
//      `--- conv ----^ ^ ^
//      `---- ... ------' '
//      `-----------------'
typedef TestWithParam<tuple<Vec3i, Vec3i, tuple<Backend, Target> > > Concat;
TEST_P(Concat, Accuracy)
{
    Vec3i inSize = get<0>(GetParam());
    Vec3i numChannels = get<1>(GetParam());
    Backend backendId = get<0>(get<2>(GetParam()));
    Target targetId = get<1>(get<2>(GetParam()));

#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000)
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD
            && inSize == Vec3i(1, 4, 5) && numChannels == Vec3i(1, 6, 2)
    )
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);  // crash
#endif

#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_CPU
            && inSize == Vec3i(1, 4, 5) && numChannels == Vec3i(1, 6, 2)
    )
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);  // TODO: IE_CPU
#endif

    Net net;

    std::vector<int> convLayerIds;
    convLayerIds.reserve(numChannels.channels);
    for (int i = 0, n = numChannels.channels; i < n; ++i)
    {
        if (!numChannels[i])
            break;

        int sz[] = {numChannels[i], inSize[0], 1, 1};
        Mat weights(4, &sz[0], CV_32F);
        randu(weights, -1.0f, 1.0f);

        LayerParams convParam;
        convParam.set("kernel_w", 1);
        convParam.set("kernel_h", 1);
        convParam.set("num_output", numChannels[i]);
        convParam.set("bias_term", false);
        convParam.type = "Convolution";
        std::ostringstream ss;
        ss << "convLayer" << i;
        convParam.name = ss.str();
        convParam.blobs.push_back(weights);

        int layerId = net.addLayer(convParam.name, convParam.type, convParam);
        convLayerIds.push_back(layerId);
        net.connect(0, 0, layerId, 0);
    }

    LayerParams concatParam;
    concatParam.type = "Concat";
    concatParam.name = "testLayer";
    int concatId = net.addLayer(concatParam.name, concatParam.type, concatParam);
    net.connect(0, 0, concatId, 0);
    for (int i = 0; i < convLayerIds.size(); ++i)
    {
        net.connect(convLayerIds[i], 0, concatId, i + 1);
    }

    int sz[] = {1, inSize[0], inSize[1], inSize[2]};
    Mat input(4, &sz[0], CV_32F);
    testLayer(input, net, backendId, targetId);
}

INSTANTIATE_TEST_CASE_P(Layer_Test_Backends, Concat, testing::Combine(
/*input size*/ testing::Values(Vec3i(1, 4, 5), Vec3i(2, 8, 6)),
/*channels*/   testing::Values(Vec3i(2, 0, 0), Vec3i(3, 4, 0), Vec3i(1, 6, 2)),
               dnnBackendsAndTargets()
));

////////////////////////////////////////////////////////////////////////////////
// Element-wise layers
////////////////////////////////////////////////////////////////////////////////
//
// input --- conv --- eltwise --- output
//      `--- conv ----^ ^ ^
//      `---- ... ------' '
//      `-----------------'
typedef TestWithParam<tuple<Vec3i, std::string, int, bool, tuple<Backend, Target> > > Eltwise;
TEST_P(Eltwise, Accuracy)
{
    Vec3i inSize = get<0>(GetParam());
    std::string op = get<1>(GetParam());
    int numConv = get<2>(GetParam());
    bool weighted = get<3>(GetParam());
    Backend backendId = get<0>(get<4>(GetParam()));
    Target targetId = get<1>(get<4>(GetParam()));

#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
    // accuracy
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL &&
        inSize == Vec3i(1, 4, 5) && op == "sum" && numConv == 1 && !weighted)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL &&
        inSize == Vec3i(2, 8, 6) && op == "sum" && numConv == 1 && !weighted)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif

#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000)
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD &&
        inSize == Vec3i(1, 4, 5))
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif

#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) && INF_ENGINE_VER_MAJOR_LT(2021040000)
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && numConv > 1)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif

#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_OPENCL &&
        op == "sum" && numConv == 1 && !weighted)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
#endif

#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000)
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && numConv > 1)
        applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
#endif

    bool convInputShift = 1;
    int numEltwiseInputs = numConv;
    if (op == "div")
    {
        numConv = 1;
        convInputShift = 0; // first input is convolution
    }

    Net net;

    std::vector<int> convLayerIds(numConv);
    for (int i = 0; i < numConv; ++i)
    {
        int sz[] = {inSize[0], inSize[0], 1, 1};
        Mat weights(4, &sz[0], CV_32F);
        randu(weights, -1.0f, 1.0f);

        LayerParams convParam;
        convParam.set("kernel_w", 1);
        convParam.set("kernel_h", 1);
        convParam.set("num_output", inSize[0]);
        convParam.set("bias_term", false);
        convParam.type = "Convolution";
        std::ostringstream ss;
        ss << "convLayer" << i;
        convParam.name = ss.str();
        convParam.blobs.push_back(weights);

        convLayerIds[i] = net.addLayer(convParam.name, convParam.type, convParam);
        net.connect(0, 0, convLayerIds[i], 0);
    }

    LayerParams eltwiseParam;
    eltwiseParam.set("operation", op);
    if (op == "sum" && weighted)
    {
        RNG& rng = cv::theRNG();
        std::vector<float> coeff(1 + numConv);
        for (int i = 0; i < coeff.size(); ++i)
        {
            coeff[i] = rng.uniform(-2.0f, 2.0f);
        }
        eltwiseParam.set("coeff", DictValue::arrayReal<float*>(&coeff[0], coeff.size()));
    }
    eltwiseParam.type = "Eltwise";
    eltwiseParam.name = "testLayer";
    int eltwiseId = net.addLayer(eltwiseParam.name, eltwiseParam.type, eltwiseParam);
    if (convInputShift == 1)
        net.connect(0, 0, eltwiseId, 0);
    for (int i = 0; i < numConv; ++i)
    {
        net.connect(convLayerIds[i], 0, eltwiseId, i + convInputShift);
    }
    if (convInputShift == 0)
        net.connect(0, 0, eltwiseId, numConv);
    for (int i = numConv; i < numEltwiseInputs; ++i)
    {
        net.connect(0, 0, eltwiseId, i + 1);
    }

    int sz[] = {1, inSize[0], inSize[1], inSize[2]};
    Mat input(4, &sz[0], CV_32F);
    if (op == "div")
        randu(input, 1.0f, 1.0f);  // ensure no divisor value has absouluate value of less than 0.5
    testLayer(input, net, backendId, targetId, /*skipCheck*/false, (op == "div") ? false : true);
}

INSTANTIATE_TEST_CASE_P(Layer_Test_Backends, Eltwise, testing::Combine(
/*input size*/ testing::Values(Vec3i(1, 4, 5), Vec3i(2, 8, 6)),
/*operation*/  testing::Values("prod", "sum", "div", "max", "min"),
/*num convs*/  testing::Values(1, 2, 3),
/*weighted(for sum only)*/ testing::Bool(),
               dnnBackendsAndTargets()
));

INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_layers_backends, dnnBackendsAndTargets());

}} // namespace