/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /****************************************************************************************\ Calculation of a texture descriptors from GLCM (Grey Level Co-occurrence Matrix'es) The code was submitted by Daniel Eaton [danieljameseaton@yahoo.com] \****************************************************************************************/ #include "precomp.hpp" #include #include #define CV_MAX_NUM_GREY_LEVELS_8U 256 struct CvGLCM { int matrixSideLength; int numMatrices; double*** matrices; int numLookupTableElements; int forwardLookupTable[CV_MAX_NUM_GREY_LEVELS_8U]; int reverseLookupTable[CV_MAX_NUM_GREY_LEVELS_8U]; double** descriptors; int numDescriptors; int descriptorOptimizationType; int optimizationType; }; static void icvCreateGLCM_LookupTable_8u_C1R( const uchar* srcImageData, int srcImageStep, CvSize srcImageSize, CvGLCM* destGLCM, int* steps, int numSteps, int* memorySteps ); static void icvCreateGLCMDescriptors_AllowDoubleNest( CvGLCM* destGLCM, int matrixIndex ); CV_IMPL CvGLCM* cvCreateGLCM( const IplImage* srcImage, int stepMagnitude, const int* srcStepDirections,/* should be static array.. or if not the user should handle de-allocation */ int numStepDirections, int optimizationType ) { static const int defaultStepDirections[] = { 0,1, -1,1, -1,0, -1,-1 }; int* memorySteps = 0; CvGLCM* newGLCM = 0; int* stepDirections = 0; CV_FUNCNAME( "cvCreateGLCM" ); __BEGIN__; uchar* srcImageData = 0; CvSize srcImageSize; int srcImageStep; int stepLoop; const int maxNumGreyLevels8u = CV_MAX_NUM_GREY_LEVELS_8U; if( !srcImage ) CV_ERROR( CV_StsNullPtr, "" ); if( srcImage->nChannels != 1 ) CV_ERROR( CV_BadNumChannels, "Number of channels must be 1"); if( srcImage->depth != IPL_DEPTH_8U ) CV_ERROR( CV_BadDepth, "Depth must be equal IPL_DEPTH_8U"); // no Directions provided, use the default ones - 0 deg, 45, 90, 135 if( !srcStepDirections ) { srcStepDirections = defaultStepDirections; } CV_CALL( stepDirections = (int*)cvAlloc( numStepDirections*2*sizeof(stepDirections[0]))); memcpy( stepDirections, srcStepDirections, numStepDirections*2*sizeof(stepDirections[0])); cvGetImageRawData( srcImage, &srcImageData, &srcImageStep, &srcImageSize ); // roll together Directions and magnitudes together with knowledge of image (step) CV_CALL( memorySteps = (int*)cvAlloc( numStepDirections*sizeof(memorySteps[0]))); for( stepLoop = 0; stepLoop < numStepDirections; stepLoop++ ) { stepDirections[stepLoop*2 + 0] *= stepMagnitude; stepDirections[stepLoop*2 + 1] *= stepMagnitude; memorySteps[stepLoop] = stepDirections[stepLoop*2 + 0]*srcImageStep + stepDirections[stepLoop*2 + 1]; } CV_CALL( newGLCM = (CvGLCM*)cvAlloc(sizeof(newGLCM))); memset( newGLCM, 0, sizeof(newGLCM) ); newGLCM->matrices = 0; newGLCM->numMatrices = numStepDirections; newGLCM->optimizationType = optimizationType; if( optimizationType <= CV_GLCM_OPTIMIZATION_LUT ) { int lookupTableLoop, imageColLoop, imageRowLoop, lineOffset = 0; // if optimization type is set to lut, then make one for the image if( optimizationType == CV_GLCM_OPTIMIZATION_LUT ) { for( imageRowLoop = 0; imageRowLoop < srcImageSize.height; imageRowLoop++, lineOffset += srcImageStep ) { for( imageColLoop = 0; imageColLoop < srcImageSize.width; imageColLoop++ ) { newGLCM->forwardLookupTable[srcImageData[lineOffset+imageColLoop]]=1; } } newGLCM->numLookupTableElements = 0; for( lookupTableLoop = 0; lookupTableLoop < maxNumGreyLevels8u; lookupTableLoop++ ) { if( newGLCM->forwardLookupTable[ lookupTableLoop ] != 0 ) { newGLCM->forwardLookupTable[ lookupTableLoop ] = newGLCM->numLookupTableElements; newGLCM->reverseLookupTable[ newGLCM->numLookupTableElements ] = lookupTableLoop; newGLCM->numLookupTableElements++; } } } // otherwise make a "LUT" which contains all the gray-levels (for code-reuse) else if( optimizationType == CV_GLCM_OPTIMIZATION_NONE ) { for( lookupTableLoop = 0; lookupTableLoop forwardLookupTable[ lookupTableLoop ] = lookupTableLoop; newGLCM->reverseLookupTable[ lookupTableLoop ] = lookupTableLoop; } newGLCM->numLookupTableElements = maxNumGreyLevels8u; } newGLCM->matrixSideLength = newGLCM->numLookupTableElements; icvCreateGLCM_LookupTable_8u_C1R( srcImageData, srcImageStep, srcImageSize, newGLCM, stepDirections, numStepDirections, memorySteps ); } else if( optimizationType == CV_GLCM_OPTIMIZATION_HISTOGRAM ) { CV_ERROR( CV_StsBadFlag, "Histogram-based method is not implemented" ); /* newGLCM->numMatrices *= 2; newGLCM->matrixSideLength = maxNumGreyLevels8u*2; icvCreateGLCM_Histogram_8uC1R( srcImageStep, srcImageSize, srcImageData, newGLCM, numStepDirections, stepDirections, memorySteps ); */ } __END__; cvFree( &memorySteps ); cvFree( &stepDirections ); if( cvGetErrStatus() < 0 ) { cvFree( &newGLCM ); } return newGLCM; } CV_IMPL void cvReleaseGLCM( CvGLCM** GLCM, int flag ) { CV_FUNCNAME( "cvReleaseGLCM" ); __BEGIN__; int matrixLoop; if( !GLCM ) CV_ERROR( CV_StsNullPtr, "" ); if( *GLCM ) EXIT; // repeated deallocation: just skip it. if( (flag == CV_GLCM_GLCM || flag == CV_GLCM_ALL) && (*GLCM)->matrices ) { for( matrixLoop = 0; matrixLoop < (*GLCM)->numMatrices; matrixLoop++ ) { if( (*GLCM)->matrices[ matrixLoop ] ) { cvFree( (*GLCM)->matrices[matrixLoop] ); cvFree( (*GLCM)->matrices + matrixLoop ); } } cvFree( &((*GLCM)->matrices) ); } if( (flag == CV_GLCM_DESC || flag == CV_GLCM_ALL) && (*GLCM)->descriptors ) { for( matrixLoop = 0; matrixLoop < (*GLCM)->numMatrices; matrixLoop++ ) { cvFree( (*GLCM)->descriptors + matrixLoop ); } cvFree( &((*GLCM)->descriptors) ); } if( flag == CV_GLCM_ALL ) { cvFree( GLCM ); } __END__; } static void icvCreateGLCM_LookupTable_8u_C1R( const uchar* srcImageData, int srcImageStep, CvSize srcImageSize, CvGLCM* destGLCM, int* steps, int numSteps, int* memorySteps ) { int* stepIncrementsCounter = 0; CV_FUNCNAME( "icvCreateGLCM_LookupTable_8u_C1R" ); __BEGIN__; int matrixSideLength = destGLCM->matrixSideLength; int stepLoop, sideLoop1, sideLoop2; int colLoop, rowLoop, lineOffset = 0; double*** matrices = 0; // allocate memory to the matrices CV_CALL( destGLCM->matrices = (double***)cvAlloc( sizeof(matrices[0])*numSteps )); matrices = destGLCM->matrices; for( stepLoop=0; stepLoopforwardLookupTable[srcImageData[lineOffset + colLoop]]; for( stepLoop=0; stepLoop=0 && row2>=0 && col2forwardLookupTable[ srcImageData[ lineOffset + colLoop + memoryStep ] ]; // maintain symmetry matrices[stepLoop][pixelValue1][pixelValue2] ++; matrices[stepLoop][pixelValue2][pixelValue1] ++; // incremenet counter of total number of increments stepIncrementsCounter[stepLoop] += 2; } } } } // normalize matrices. each element is a probability of gray value i,j adjacency in direction/magnitude k for( sideLoop1=0; sideLoop1matrices = matrices; __END__; cvFree( &stepIncrementsCounter ); if( cvGetErrStatus() < 0 ) cvReleaseGLCM( &destGLCM, CV_GLCM_GLCM ); } CV_IMPL void cvCreateGLCMDescriptors( CvGLCM* destGLCM, int descriptorOptimizationType ) { CV_FUNCNAME( "cvCreateGLCMDescriptors" ); __BEGIN__; int matrixLoop; if( !destGLCM ) CV_ERROR( CV_StsNullPtr, "" ); if( !(destGLCM->matrices) ) CV_ERROR( CV_StsNullPtr, "Matrices are not allocated" ); CV_CALL( cvReleaseGLCM( &destGLCM, CV_GLCM_DESC )); if( destGLCM->optimizationType != CV_GLCM_OPTIMIZATION_HISTOGRAM ) { destGLCM->descriptorOptimizationType = destGLCM->numDescriptors = descriptorOptimizationType; } else { CV_ERROR( CV_StsBadFlag, "Histogram-based method is not implemented" ); // destGLCM->descriptorOptimizationType = destGLCM->numDescriptors = CV_GLCMDESC_OPTIMIZATION_HISTOGRAM; } CV_CALL( destGLCM->descriptors = (double**) cvAlloc( destGLCM->numMatrices*sizeof(destGLCM->descriptors[0]))); for( matrixLoop = 0; matrixLoop < destGLCM->numMatrices; matrixLoop ++ ) { CV_CALL( destGLCM->descriptors[ matrixLoop ] = (double*)cvAlloc( destGLCM->numDescriptors*sizeof(destGLCM->descriptors[0][0]))); memset( destGLCM->descriptors[matrixLoop], 0, destGLCM->numDescriptors*sizeof(double) ); switch( destGLCM->descriptorOptimizationType ) { case CV_GLCMDESC_OPTIMIZATION_ALLOWDOUBLENEST: icvCreateGLCMDescriptors_AllowDoubleNest( destGLCM, matrixLoop ); break; default: CV_ERROR( CV_StsBadFlag, "descriptorOptimizationType different from CV_GLCMDESC_OPTIMIZATION_ALLOWDOUBLENEST\n" "is not supported" ); /* case CV_GLCMDESC_OPTIMIZATION_ALLOWTRIPLENEST: icvCreateGLCMDescriptors_AllowTripleNest( destGLCM, matrixLoop ); break; case CV_GLCMDESC_OPTIMIZATION_HISTOGRAM: if(matrixLoop < destGLCM->numMatrices>>1) icvCreateGLCMDescriptors_Histogram( destGLCM, matrixLoop); break; */ } } __END__; if( cvGetErrStatus() < 0 ) cvReleaseGLCM( &destGLCM, CV_GLCM_DESC ); } static void icvCreateGLCMDescriptors_AllowDoubleNest( CvGLCM* destGLCM, int matrixIndex ) { int sideLoop1, sideLoop2; int matrixSideLength = destGLCM->matrixSideLength; double** matrix = destGLCM->matrices[ matrixIndex ]; double* descriptors = destGLCM->descriptors[ matrixIndex ]; double* marginalProbability = (double*)cvAlloc( matrixSideLength * sizeof(marginalProbability[0])); memset( marginalProbability, 0, matrixSideLength * sizeof(double) ); double maximumProbability = 0; double marginalProbabilityEntropy = 0; double correlationMean = 0, correlationStdDeviation = 0, correlationProductTerm = 0; for( sideLoop1=0; sideLoop1reverseLookupTable[ sideLoop1 ]; for( sideLoop2=0; sideLoop2reverseLookupTable[ sideLoop2 ]; int sideLoopDifference = actualSideLoop1 - actualSideLoop2; int sideLoopDifferenceSquared = sideLoopDifference*sideLoopDifference; marginalProbability[ sideLoop1 ] += entryValue; correlationMean += actualSideLoop1*entryValue; maximumProbability = MAX( maximumProbability, entryValue ); if( actualSideLoop2 > actualSideLoop1 ) { descriptors[ CV_GLCMDESC_CONTRAST ] += sideLoopDifferenceSquared * entryValue; } descriptors[ CV_GLCMDESC_HOMOGENITY ] += entryValue / ( 1.0 + sideLoopDifferenceSquared ); if( entryValue > 0 ) { descriptors[ CV_GLCMDESC_ENTROPY ] += entryValue * log( entryValue ); } descriptors[ CV_GLCMDESC_ENERGY ] += entryValue*entryValue; } if( marginalProbability>0 ) marginalProbabilityEntropy += marginalProbability[ actualSideLoop1 ]*log(marginalProbability[ actualSideLoop1 ]); } marginalProbabilityEntropy = -marginalProbabilityEntropy; descriptors[ CV_GLCMDESC_CONTRAST ] += descriptors[ CV_GLCMDESC_CONTRAST ]; descriptors[ CV_GLCMDESC_ENTROPY ] = -descriptors[ CV_GLCMDESC_ENTROPY ]; descriptors[ CV_GLCMDESC_MAXIMUMPROBABILITY ] = maximumProbability; double HXY = 0, HXY1 = 0, HXY2 = 0; HXY = descriptors[ CV_GLCMDESC_ENTROPY ]; for( sideLoop1=0; sideLoop1reverseLookupTable[ sideLoop1 ]; for( sideLoop2=0; sideLoop2reverseLookupTable[ sideLoop2 ]; correlationProductTerm += (actualSideLoop1 - correlationMean) * (actualSideLoop2 - correlationMean) * entryValue; double clusterTerm = actualSideLoop1 + actualSideLoop2 - correlationMean - correlationMean; descriptors[ CV_GLCMDESC_CLUSTERTENDENCY ] += clusterTerm * clusterTerm * entryValue; descriptors[ CV_GLCMDESC_CLUSTERSHADE ] += clusterTerm * clusterTerm * clusterTerm * entryValue; double HXYValue = marginalProbability[ actualSideLoop1 ] * marginalProbability[ actualSideLoop2 ]; if( HXYValue>0 ) { double HXYValueLog = log( HXYValue ); HXY1 += entryValue * HXYValueLog; HXY2 += HXYValue * HXYValueLog; } } correlationStdDeviation += (actualSideLoop1-correlationMean) * (actualSideLoop1-correlationMean) * sideEntryValueSum; } HXY1 =- HXY1; HXY2 =- HXY2; descriptors[ CV_GLCMDESC_CORRELATIONINFO1 ] = ( HXY - HXY1 ) / ( correlationMean ); descriptors[ CV_GLCMDESC_CORRELATIONINFO2 ] = sqrt( 1.0 - exp( -2.0 * (HXY2 - HXY ) ) ); correlationStdDeviation = sqrt( correlationStdDeviation ); descriptors[ CV_GLCMDESC_CORRELATION ] = correlationProductTerm / (correlationStdDeviation*correlationStdDeviation ); delete [] marginalProbability; } CV_IMPL double cvGetGLCMDescriptor( CvGLCM* GLCM, int step, int descriptor ) { double value = DBL_MAX; CV_FUNCNAME( "cvGetGLCMDescriptor" ); __BEGIN__; if( !GLCM ) CV_ERROR( CV_StsNullPtr, "" ); if( !(GLCM->descriptors) ) CV_ERROR( CV_StsNullPtr, "" ); if( (unsigned)step >= (unsigned)(GLCM->numMatrices)) CV_ERROR( CV_StsOutOfRange, "step is not in 0 .. GLCM->numMatrices - 1" ); if( (unsigned)descriptor >= (unsigned)(GLCM->numDescriptors)) CV_ERROR( CV_StsOutOfRange, "descriptor is not in 0 .. GLCM->numDescriptors - 1" ); value = GLCM->descriptors[step][descriptor]; __END__; return value; } CV_IMPL void cvGetGLCMDescriptorStatistics( CvGLCM* GLCM, int descriptor, double* _average, double* _standardDeviation ) { CV_FUNCNAME( "cvGetGLCMDescriptorStatistics" ); if( _average ) *_average = DBL_MAX; if( _standardDeviation ) *_standardDeviation = DBL_MAX; __BEGIN__; int matrixLoop, numMatrices; double average = 0, squareSum = 0; if( !GLCM ) CV_ERROR( CV_StsNullPtr, "" ); if( !(GLCM->descriptors)) CV_ERROR( CV_StsNullPtr, "Descriptors are not calculated" ); if( (unsigned)descriptor >= (unsigned)(GLCM->numDescriptors) ) CV_ERROR( CV_StsOutOfRange, "Descriptor index is out of range" ); numMatrices = GLCM->numMatrices; for( matrixLoop = 0; matrixLoop < numMatrices; matrixLoop++ ) { double temp = GLCM->descriptors[ matrixLoop ][ descriptor ]; average += temp; squareSum += temp*temp; } average /= numMatrices; if( _average ) *_average = average; if( _standardDeviation ) *_standardDeviation = sqrt( (squareSum - average*average*numMatrices)/(numMatrices-1)); __END__; } CV_IMPL IplImage* cvCreateGLCMImage( CvGLCM* GLCM, int step ) { IplImage* dest = 0; CV_FUNCNAME( "cvCreateGLCMImage" ); __BEGIN__; float* destData; int sideLoop1, sideLoop2; if( !GLCM ) CV_ERROR( CV_StsNullPtr, "" ); if( !(GLCM->matrices) ) CV_ERROR( CV_StsNullPtr, "Matrices are not allocated" ); if( (unsigned)step >= (unsigned)(GLCM->numMatrices) ) CV_ERROR( CV_StsOutOfRange, "The step index is out of range" ); dest = cvCreateImage( cvSize( GLCM->matrixSideLength, GLCM->matrixSideLength ), IPL_DEPTH_32F, 1 ); destData = (float*)(dest->imageData); for( sideLoop1 = 0; sideLoop1 < GLCM->matrixSideLength; sideLoop1++, (float*&)destData += dest->widthStep ) { for( sideLoop2=0; sideLoop2 < GLCM->matrixSideLength; sideLoop2++ ) { double matrixValue = GLCM->matrices[step][sideLoop1][sideLoop2]; destData[ sideLoop2 ] = (float)matrixValue; } } __END__; if( cvGetErrStatus() < 0 ) cvReleaseImage( &dest ); return dest; }