#if defined _MSC_VER && _MSC_VER >= 1400 #pragma warning( disable : 4201 4408 4127 4100) #endif #include #include #include #include #include #include "cvconfig.h" #include #include #include "opencv2/gpu/gpu.hpp" #include "opencv2/highgui/highgui.hpp" #ifdef HAVE_CUDA #include "NPP_staging/NPP_staging.hpp" #include "NCVBroxOpticalFlow.hpp" #endif #if !defined(HAVE_CUDA) int main( int argc, const char** argv ) { std::cout << "Please compile the library with CUDA support" << std::endl; return -1; } #else //using std::tr1::shared_ptr; using cv::Ptr; #define PARAM_LEFT "--left" #define PARAM_RIGHT "--right" #define PARAM_SCALE "--scale" #define PARAM_ALPHA "--alpha" #define PARAM_GAMMA "--gamma" #define PARAM_INNER "--inner" #define PARAM_OUTER "--outer" #define PARAM_SOLVER "--solver" #define PARAM_TIME_STEP "--time-step" #define PARAM_HELP "--help" Ptr g_pGPUMemAllocator; Ptr g_pHostMemAllocator; class RgbToMonochrome { public: float operator ()(unsigned char b, unsigned char g, unsigned char r) { float _r = static_cast(r)/255.0f; float _g = static_cast(g)/255.0f; float _b = static_cast(b)/255.0f; return (_r + _g + _b)/3.0f; } }; class RgbToR { public: float operator ()(unsigned char b, unsigned char g, unsigned char r) { return static_cast(r)/255.0f; } }; class RgbToG { public: float operator ()(unsigned char b, unsigned char g, unsigned char r) { return static_cast(g)/255.0f; } }; class RgbToB { public: float operator ()(unsigned char b, unsigned char g, unsigned char r) { return static_cast(b)/255.0f; } }; template NCVStatus CopyData(IplImage *image, Ptr >& dst) { dst = Ptr > (new NCVMatrixAlloc (*g_pHostMemAllocator, image->width, image->height)); ncvAssertReturn (dst->isMemAllocated (), NCV_ALLOCATOR_BAD_ALLOC); unsigned char *row = reinterpret_cast (image->imageData); T convert; for (int i = 0; i < image->height; ++i) { for (int j = 0; j < image->width; ++j) { if (image->nChannels < 3) { dst->ptr ()[j + i*dst->stride ()] = static_cast (*(row + j*image->nChannels))/255.0f; } else { unsigned char *color = row + j * image->nChannels; dst->ptr ()[j +i*dst->stride ()] = convert (color[0], color[1], color[2]); } } row += image->widthStep; } return NCV_SUCCESS; } template NCVStatus CopyData(const IplImage *image, const NCVMatrixAlloc &dst) { unsigned char *row = reinterpret_cast (image->imageData); T convert; for (int i = 0; i < image->height; ++i) { for (int j = 0; j < image->width; ++j) { if (image->nChannels < 3) { dst.ptr ()[j + i*dst.stride ()] = static_cast(*(row + j*image->nChannels))/255.0f; } else { unsigned char *color = row + j * image->nChannels; dst.ptr ()[j +i*dst.stride()] = convert (color[0], color[1], color[2]); } } row += image->widthStep; } return NCV_SUCCESS; } NCVStatus LoadImages (const char *frame0Name, const char *frame1Name, int &width, int &height, Ptr > &src, Ptr > &dst, IplImage *&firstFrame, IplImage *&lastFrame) { IplImage *image; image = cvLoadImage (frame0Name); if (image == 0) { std::cout << "Could not open '" << frame0Name << "'\n"; return NCV_FILE_ERROR; } firstFrame = image; // copy data to src ncvAssertReturnNcvStat (CopyData (image, src)); IplImage *image2; image2 = cvLoadImage (frame1Name); if (image2 == 0) { std::cout << "Could not open '" << frame1Name << "'\n"; return NCV_FILE_ERROR; } lastFrame = image2; ncvAssertReturnNcvStat (CopyData (image2, dst)); width = image->width; height = image->height; return NCV_SUCCESS; } template inline T Clamp (T x, T a, T b) { return ((x) > (a) ? ((x) < (b) ? (x) : (b)) : (a)); } template inline T MapValue (T x, T a, T b, T c, T d) { x = Clamp (x, a, b); return c + (d - c) * (x - a) / (b - a); } NCVStatus ShowFlow (NCVMatrixAlloc &u, NCVMatrixAlloc &v, const char *name) { IplImage *flowField; NCVMatrixAlloc host_u(*g_pHostMemAllocator, u.width(), u.height()); ncvAssertReturn(host_u.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVMatrixAlloc host_v (*g_pHostMemAllocator, u.width (), u.height ()); ncvAssertReturn (host_v.isMemAllocated (), NCV_ALLOCATOR_BAD_ALLOC); ncvAssertReturnNcvStat (u.copySolid (host_u, 0)); ncvAssertReturnNcvStat (v.copySolid (host_v, 0)); float *ptr_u = host_u.ptr (); float *ptr_v = host_v.ptr (); float maxDisplacement = 1.0f; for (Ncv32u i = 0; i < u.height (); ++i) { for (Ncv32u j = 0; j < u.width (); ++j) { float d = std::max ( fabsf(*ptr_u), fabsf(*ptr_v) ); if (d > maxDisplacement) maxDisplacement = d; ++ptr_u; ++ptr_v; } ptr_u += u.stride () - u.width (); ptr_v += v.stride () - v.width (); } CvSize image_size = cvSize (u.width (), u.height ()); flowField = cvCreateImage (image_size, IPL_DEPTH_8U, 4); if (flowField == 0) return NCV_NULL_PTR; unsigned char *row = reinterpret_cast (flowField->imageData); ptr_u = host_u.ptr(); ptr_v = host_v.ptr(); for (int i = 0; i < flowField->height; ++i) { for (int j = 0; j < flowField->width; ++j) { (row + j * flowField->nChannels)[0] = 0; (row + j * flowField->nChannels)[1] = static_cast (MapValue (-(*ptr_v), -maxDisplacement, maxDisplacement, 0.0f, 255.0f)); (row + j * flowField->nChannels)[2] = static_cast (MapValue (*ptr_u , -maxDisplacement, maxDisplacement, 0.0f, 255.0f)); (row + j * flowField->nChannels)[3] = 255; ++ptr_u; ++ptr_v; } row += flowField->widthStep; ptr_u += u.stride () - u.width (); ptr_v += v.stride () - v.width (); } cvShowImage (name, flowField); return NCV_SUCCESS; } IplImage *CreateImage (NCVMatrixAlloc &h_r, NCVMatrixAlloc &h_g, NCVMatrixAlloc &h_b) { CvSize imageSize = cvSize (h_r.width (), h_r.height ()); IplImage *image = cvCreateImage (imageSize, IPL_DEPTH_8U, 4); if (image == 0) return 0; unsigned char *row = reinterpret_cast (image->imageData); for (int i = 0; i < image->height; ++i) { for (int j = 0; j < image->width; ++j) { int offset = j * image->nChannels; int pos = i * h_r.stride () + j; row[offset + 0] = static_cast (h_b.ptr ()[pos] * 255.0f); row[offset + 1] = static_cast (h_g.ptr ()[pos] * 255.0f); row[offset + 2] = static_cast (h_r.ptr ()[pos] * 255.0f); row[offset + 3] = 255; } row += image->widthStep; } return image; } void PrintHelp () { std::cout << "Usage help:\n"; std::cout << std::setiosflags(std::ios::left); std::cout << "\t" << std::setw(15) << PARAM_ALPHA << " - set alpha\n"; std::cout << "\t" << std::setw(15) << PARAM_GAMMA << " - set gamma\n"; std::cout << "\t" << std::setw(15) << PARAM_INNER << " - set number of inner iterations\n"; std::cout << "\t" << std::setw(15) << PARAM_LEFT << " - specify left image\n"; std::cout << "\t" << std::setw(15) << PARAM_RIGHT << " - specify right image\n"; std::cout << "\t" << std::setw(15) << PARAM_OUTER << " - set number of outer iterations\n"; std::cout << "\t" << std::setw(15) << PARAM_SCALE << " - set pyramid scale factor\n"; std::cout << "\t" << std::setw(15) << PARAM_SOLVER << " - set number of basic solver iterations\n"; std::cout << "\t" << std::setw(15) << PARAM_TIME_STEP << " - set frame interpolation time step\n"; std::cout << "\t" << std::setw(15) << PARAM_HELP << " - display this help message\n"; } int ProcessCommandLine(int argc, char **argv, Ncv32f &timeStep, char *&frame0Name, char *&frame1Name, NCVBroxOpticalFlowDescriptor &desc) { timeStep = 0.25f; for (int iarg = 1; iarg < argc; ++iarg) { if (strcmp(argv[iarg], PARAM_LEFT) == 0) { if (iarg + 1 < argc) { frame0Name = argv[++iarg]; } else return -1; } if (strcmp(argv[iarg], PARAM_RIGHT) == 0) { if (iarg + 1 < argc) { frame1Name = argv[++iarg]; } else return -1; } else if(strcmp(argv[iarg], PARAM_SCALE) == 0) { if (iarg + 1 < argc) desc.scale_factor = static_cast(atof(argv[++iarg])); else return -1; } else if(strcmp(argv[iarg], PARAM_ALPHA) == 0) { if (iarg + 1 < argc) desc.alpha = static_cast(atof(argv[++iarg])); else return -1; } else if(strcmp(argv[iarg], PARAM_GAMMA) == 0) { if (iarg + 1 < argc) desc.gamma = static_cast(atof(argv[++iarg])); else return -1; } else if(strcmp(argv[iarg], PARAM_INNER) == 0) { if (iarg + 1 < argc) desc.number_of_inner_iterations = static_cast(atoi(argv[++iarg])); else return -1; } else if(strcmp(argv[iarg], PARAM_OUTER) == 0) { if (iarg + 1 < argc) desc.number_of_outer_iterations = static_cast(atoi(argv[++iarg])); else return -1; } else if(strcmp(argv[iarg], PARAM_SOLVER) == 0) { if (iarg + 1 < argc) desc.number_of_solver_iterations = static_cast(atoi(argv[++iarg])); else return -1; } else if(strcmp(argv[iarg], PARAM_TIME_STEP) == 0) { if (iarg + 1 < argc) timeStep = static_cast(atof(argv[++iarg])); else return -1; } else if(strcmp(argv[iarg], PARAM_HELP) == 0) { PrintHelp (); return 0; } } return 0; } int main(int argc, char **argv) { char *frame0Name = 0, *frame1Name = 0; Ncv32f timeStep = 0.01f; NCVBroxOpticalFlowDescriptor desc; desc.alpha = 0.197f; desc.gamma = 50.0f; desc.number_of_inner_iterations = 10; desc.number_of_outer_iterations = 77; desc.number_of_solver_iterations = 10; desc.scale_factor = 0.8f; int result = ProcessCommandLine (argc, argv, timeStep, frame0Name, frame1Name, desc); if (argc == 1 || result) { PrintHelp(); return result; } cv::gpu::printShortCudaDeviceInfo(cv::gpu::getDevice()); std::cout << "OpenCV / NVIDIA Computer Vision\n"; std::cout << "Optical Flow Demo: Frame Interpolation\n"; std::cout << "=========================================\n"; std::cout << "Press:\n ESC to quit\n 'a' to move to the previous frame\n 's' to move to the next frame\n"; int devId; ncvAssertCUDAReturn(cudaGetDevice(&devId), -1); cudaDeviceProp devProp; ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), -1); std::cout << "Using GPU: " << devId << "(" << devProp.name << "), arch=" << devProp.major << "." << devProp.minor << std::endl; g_pGPUMemAllocator = Ptr (new NCVMemNativeAllocator (NCVMemoryTypeDevice, static_cast(devProp.textureAlignment))); ncvAssertPrintReturn (g_pGPUMemAllocator->isInitialized (), "Device memory allocator isn't initialized", -1); g_pHostMemAllocator = Ptr (new NCVMemNativeAllocator (NCVMemoryTypeHostPageable, static_cast(devProp.textureAlignment))); ncvAssertPrintReturn (g_pHostMemAllocator->isInitialized (), "Host memory allocator isn't initialized", -1); int width, height; Ptr > src_host; Ptr > dst_host; IplImage *firstFrame, *lastFrame; if (frame0Name != 0 && frame1Name != 0) { ncvAssertReturnNcvStat (LoadImages (frame0Name, frame1Name, width, height, src_host, dst_host, firstFrame, lastFrame)); } else { ncvAssertReturnNcvStat (LoadImages ("frame10.bmp", "frame11.bmp", width, height, src_host, dst_host, firstFrame, lastFrame)); } Ptr > src (new NCVMatrixAlloc (*g_pGPUMemAllocator, src_host->width (), src_host->height ())); ncvAssertReturn(src->isMemAllocated(), -1); Ptr > dst (new NCVMatrixAlloc (*g_pGPUMemAllocator, src_host->width (), src_host->height ())); ncvAssertReturn (dst->isMemAllocated (), -1); ncvAssertReturnNcvStat (src_host->copySolid ( *src, 0 )); ncvAssertReturnNcvStat (dst_host->copySolid ( *dst, 0 )); #if defined SAFE_MAT_DECL #undef SAFE_MAT_DECL #endif #define SAFE_MAT_DECL(name, allocator, sx, sy) \ NCVMatrixAlloc name(*allocator, sx, sy);\ ncvAssertReturn(name.isMemAllocated(), -1); SAFE_MAT_DECL (u, g_pGPUMemAllocator, width, height); SAFE_MAT_DECL (v, g_pGPUMemAllocator, width, height); SAFE_MAT_DECL (uBck, g_pGPUMemAllocator, width, height); SAFE_MAT_DECL (vBck, g_pGPUMemAllocator, width, height); SAFE_MAT_DECL (h_r, g_pHostMemAllocator, width, height); SAFE_MAT_DECL (h_g, g_pHostMemAllocator, width, height); SAFE_MAT_DECL (h_b, g_pHostMemAllocator, width, height); std::cout << "Estimating optical flow\nForward...\n"; if (NCV_SUCCESS != NCVBroxOpticalFlow (desc, *g_pGPUMemAllocator, *src, *dst, u, v, 0)) { std::cout << "Failed\n"; return -1; } std::cout << "Backward...\n"; if (NCV_SUCCESS != NCVBroxOpticalFlow (desc, *g_pGPUMemAllocator, *dst, *src, uBck, vBck, 0)) { std::cout << "Failed\n"; return -1; } // matrix for temporary data SAFE_MAT_DECL (d_temp, g_pGPUMemAllocator, width, height); // first frame color components (GPU memory) SAFE_MAT_DECL (d_r, g_pGPUMemAllocator, width, height); SAFE_MAT_DECL (d_g, g_pGPUMemAllocator, width, height); SAFE_MAT_DECL (d_b, g_pGPUMemAllocator, width, height); // second frame color components (GPU memory) SAFE_MAT_DECL (d_rt, g_pGPUMemAllocator, width, height); SAFE_MAT_DECL (d_gt, g_pGPUMemAllocator, width, height); SAFE_MAT_DECL (d_bt, g_pGPUMemAllocator, width, height); // intermediate frame color components (GPU memory) SAFE_MAT_DECL (d_rNew, g_pGPUMemAllocator, width, height); SAFE_MAT_DECL (d_gNew, g_pGPUMemAllocator, width, height); SAFE_MAT_DECL (d_bNew, g_pGPUMemAllocator, width, height); // interpolated forward flow SAFE_MAT_DECL (ui, g_pGPUMemAllocator, width, height); SAFE_MAT_DECL (vi, g_pGPUMemAllocator, width, height); // interpolated backward flow SAFE_MAT_DECL (ubi, g_pGPUMemAllocator, width, height); SAFE_MAT_DECL (vbi, g_pGPUMemAllocator, width, height); // occlusion masks SAFE_MAT_DECL (occ0, g_pGPUMemAllocator, width, height); SAFE_MAT_DECL (occ1, g_pGPUMemAllocator, width, height); // prepare color components on host and copy them to device memory ncvAssertReturnNcvStat (CopyData (firstFrame, h_r)); ncvAssertReturnNcvStat (CopyData (firstFrame, h_g)); ncvAssertReturnNcvStat (CopyData (firstFrame, h_b)); ncvAssertReturnNcvStat (h_r.copySolid ( d_r, 0 )); ncvAssertReturnNcvStat (h_g.copySolid ( d_g, 0 )); ncvAssertReturnNcvStat (h_b.copySolid ( d_b, 0 )); ncvAssertReturnNcvStat (CopyData (lastFrame, h_r)); ncvAssertReturnNcvStat (CopyData (lastFrame, h_g)); ncvAssertReturnNcvStat (CopyData (lastFrame, h_b)); ncvAssertReturnNcvStat (h_r.copySolid ( d_rt, 0 )); ncvAssertReturnNcvStat (h_g.copySolid ( d_gt, 0 )); ncvAssertReturnNcvStat (h_b.copySolid ( d_bt, 0 )); std::cout << "Interpolating...\n"; std::cout.precision (4); std::vector frames; frames.push_back (firstFrame); // compute interpolated frames for (Ncv32f timePos = timeStep; timePos < 1.0f; timePos += timeStep) { ncvAssertCUDAReturn (cudaMemset (ui.ptr (), 0, ui.pitch () * ui.height ()), NCV_CUDA_ERROR); ncvAssertCUDAReturn (cudaMemset (vi.ptr (), 0, vi.pitch () * vi.height ()), NCV_CUDA_ERROR); ncvAssertCUDAReturn (cudaMemset (ubi.ptr (), 0, ubi.pitch () * ubi.height ()), NCV_CUDA_ERROR); ncvAssertCUDAReturn (cudaMemset (vbi.ptr (), 0, vbi.pitch () * vbi.height ()), NCV_CUDA_ERROR); ncvAssertCUDAReturn (cudaMemset (occ0.ptr (), 0, occ0.pitch () * occ0.height ()), NCV_CUDA_ERROR); ncvAssertCUDAReturn (cudaMemset (occ1.ptr (), 0, occ1.pitch () * occ1.height ()), NCV_CUDA_ERROR); NppStInterpolationState state; // interpolation state should be filled once except pSrcFrame0, pSrcFrame1, and pNewFrame // we will only need to reset buffers content to 0 since interpolator doesn't do this itself state.size = NcvSize32u (width, height); state.nStep = d_r.pitch (); state.pSrcFrame0 = d_r.ptr (); state.pSrcFrame1 = d_rt.ptr (); state.pFU = u.ptr (); state.pFV = v.ptr (); state.pBU = uBck.ptr (); state.pBV = vBck.ptr (); state.pos = timePos; state.pNewFrame = d_rNew.ptr (); state.ppBuffers[0] = occ0.ptr (); state.ppBuffers[1] = occ1.ptr (); state.ppBuffers[2] = ui.ptr (); state.ppBuffers[3] = vi.ptr (); state.ppBuffers[4] = ubi.ptr (); state.ppBuffers[5] = vbi.ptr (); // interpolate red channel nppiStInterpolateFrames (&state); // reset buffers ncvAssertCUDAReturn (cudaMemset (ui.ptr (), 0, ui.pitch () * ui.height ()), NCV_CUDA_ERROR); ncvAssertCUDAReturn (cudaMemset (vi.ptr (), 0, vi.pitch () * vi.height ()), NCV_CUDA_ERROR); ncvAssertCUDAReturn (cudaMemset (ubi.ptr (), 0, ubi.pitch () * ubi.height ()), NCV_CUDA_ERROR); ncvAssertCUDAReturn (cudaMemset (vbi.ptr (), 0, vbi.pitch () * vbi.height ()), NCV_CUDA_ERROR); ncvAssertCUDAReturn (cudaMemset (occ0.ptr (), 0, occ0.pitch () * occ0.height ()), NCV_CUDA_ERROR); ncvAssertCUDAReturn (cudaMemset (occ1.ptr (), 0, occ1.pitch () * occ1.height ()), NCV_CUDA_ERROR); // interpolate green channel state.pSrcFrame0 = d_g.ptr (); state.pSrcFrame1 = d_gt.ptr (); state.pNewFrame = d_gNew.ptr (); nppiStInterpolateFrames (&state); // reset buffers ncvAssertCUDAReturn (cudaMemset (ui.ptr (), 0, ui.pitch () * ui.height ()), NCV_CUDA_ERROR); ncvAssertCUDAReturn (cudaMemset (vi.ptr (), 0, vi.pitch () * vi.height ()), NCV_CUDA_ERROR); ncvAssertCUDAReturn (cudaMemset (ubi.ptr (), 0, ubi.pitch () * ubi.height ()), NCV_CUDA_ERROR); ncvAssertCUDAReturn (cudaMemset (vbi.ptr (), 0, vbi.pitch () * vbi.height ()), NCV_CUDA_ERROR); ncvAssertCUDAReturn (cudaMemset (occ0.ptr (), 0, occ0.pitch () * occ0.height ()), NCV_CUDA_ERROR); ncvAssertCUDAReturn (cudaMemset (occ1.ptr (), 0, occ1.pitch () * occ1.height ()), NCV_CUDA_ERROR); // interpolate blue channel state.pSrcFrame0 = d_b.ptr (); state.pSrcFrame1 = d_bt.ptr (); state.pNewFrame = d_bNew.ptr (); nppiStInterpolateFrames (&state); // copy to host memory ncvAssertReturnNcvStat (d_rNew.copySolid (h_r, 0)); ncvAssertReturnNcvStat (d_gNew.copySolid (h_g, 0)); ncvAssertReturnNcvStat (d_bNew.copySolid (h_b, 0)); // convert to IplImage IplImage *newFrame = CreateImage (h_r, h_g, h_b); if (newFrame == 0) { std::cout << "Could not create new frame in host memory\n"; break; } frames.push_back (newFrame); std::cout << timePos * 100.0f << "%\r"; } std::cout << std::setw (5) << "100%\n"; frames.push_back (lastFrame); Ncv32u currentFrame; currentFrame = 0; ShowFlow (u, v, "Forward flow"); ShowFlow (uBck, vBck, "Backward flow"); cvShowImage ("Interpolated frame", frames[currentFrame]); bool qPressed = false; while ( !qPressed ) { int key = toupper (cvWaitKey (10)); switch (key) { case 27: qPressed = true; break; case 'A': if (currentFrame > 0) --currentFrame; cvShowImage ("Interpolated frame", frames[currentFrame]); break; case 'S': if (currentFrame < frames.size()-1) ++currentFrame; cvShowImage ("Interpolated frame", frames[currentFrame]); break; } } cvDestroyAllWindows (); std::vector::iterator iter; for (iter = frames.begin (); iter != frames.end (); ++iter) { cvReleaseImage (&(*iter)); } return 0; } #endif