/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include #include using namespace cv; using namespace cv::gpu; struct CV_GpuMeanShiftTest : public cvtest::BaseTest { CV_GpuMeanShiftTest() {} void run(int) { bool cc12_ok = TargetArchs::builtWith(FEATURE_SET_COMPUTE_12) && DeviceInfo().supports(FEATURE_SET_COMPUTE_12); if (!cc12_ok) { ts->printf(cvtest::TS::CONSOLE, "\nCompute capability 1.2 is required"); ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); return; } int spatialRad = 30; int colorRad = 30; cv::Mat img = cv::imread(std::string(ts->get_data_path()) + "meanshift/cones.png"); cv::Mat img_template; if (cv::gpu::TargetArchs::builtWith(cv::gpu::FEATURE_SET_COMPUTE_20) && cv::gpu::DeviceInfo().supports(cv::gpu::FEATURE_SET_COMPUTE_20)) img_template = cv::imread(std::string(ts->get_data_path()) + "meanshift/con_result.png"); else img_template = cv::imread(std::string(ts->get_data_path()) + "meanshift/con_result_CC1X.png"); if (img.empty() || img_template.empty()) { ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); return; } cv::Mat rgba; cvtColor(img, rgba, CV_BGR2BGRA); cv::gpu::GpuMat res; cv::gpu::meanShiftFiltering( cv::gpu::GpuMat(rgba), res, spatialRad, colorRad ); if (res.type() != CV_8UC4) { ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return; } cv::Mat result; res.download(result); uchar maxDiff = 0; for (int j = 0; j < result.rows; ++j) { const uchar* res_line = result.ptr(j); const uchar* ref_line = img_template.ptr(j); for (int i = 0; i < result.cols; ++i) { for (int k = 0; k < 3; ++k) { const uchar& ch1 = res_line[result.channels()*i + k]; const uchar& ch2 = ref_line[img_template.channels()*i + k]; uchar diff = static_cast(abs(ch1 - ch2)); if (maxDiff < diff) maxDiff = diff; } } } if (maxDiff > 0) { ts->printf(cvtest::TS::LOG, "\nMeanShift maxDiff = %d\n", maxDiff); ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); return; } ts->set_failed_test_info(cvtest::TS::OK); } }; TEST(meanShift, accuracy) { CV_GpuMeanShiftTest test; test.safe_run(); } struct CV_GpuMeanShiftProcTest : public cvtest::BaseTest { CV_GpuMeanShiftProcTest() {} void run(int) { bool cc12_ok = TargetArchs::builtWith(FEATURE_SET_COMPUTE_12) && DeviceInfo().supports(FEATURE_SET_COMPUTE_12); if (!cc12_ok) { ts->printf(cvtest::TS::CONSOLE, "\nCompute capability 1.2 is required"); ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); return; } int spatialRad = 30; int colorRad = 30; cv::Mat img = cv::imread(std::string(ts->get_data_path()) + "meanshift/cones.png"); if (img.empty()) { ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); return; } cv::Mat rgba; cvtColor(img, rgba, CV_BGR2BGRA); cv::gpu::GpuMat h_rmap_filtered; cv::gpu::meanShiftFiltering( cv::gpu::GpuMat(rgba), h_rmap_filtered, spatialRad, colorRad ); cv::gpu::GpuMat d_rmap; cv::gpu::GpuMat d_spmap; cv::gpu::meanShiftProc( cv::gpu::GpuMat(rgba), d_rmap, d_spmap, spatialRad, colorRad ); if (d_rmap.type() != CV_8UC4) { ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return; } cv::Mat rmap_filtered; h_rmap_filtered.download(rmap_filtered); cv::Mat rmap; d_rmap.download(rmap); uchar maxDiff = 0; for (int j = 0; j < rmap_filtered.rows; ++j) { const uchar* res_line = rmap_filtered.ptr(j); const uchar* ref_line = rmap.ptr(j); for (int i = 0; i < rmap_filtered.cols; ++i) { for (int k = 0; k < 3; ++k) { const uchar& ch1 = res_line[rmap_filtered.channels()*i + k]; const uchar& ch2 = ref_line[rmap.channels()*i + k]; uchar diff = static_cast(abs(ch1 - ch2)); if (maxDiff < diff) maxDiff = diff; } } } if (maxDiff > 0) { ts->printf(cvtest::TS::LOG, "\nMeanShiftProc maxDiff = %d\n", maxDiff); ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); return; } cv::Mat spmap; d_spmap.download(spmap); cv::Mat spmap_template; cv::FileStorage fs; if (cv::gpu::TargetArchs::builtWith(cv::gpu::FEATURE_SET_COMPUTE_20) && cv::gpu::DeviceInfo().supports(cv::gpu::FEATURE_SET_COMPUTE_20)) fs.open(std::string(ts->get_data_path()) + "meanshift/spmap.yaml", cv::FileStorage::READ); else fs.open(std::string(ts->get_data_path()) + "meanshift/spmap_CC1X.yaml", cv::FileStorage::READ); fs["spmap"] >> spmap_template; for (int y = 0; y < spmap.rows; ++y) { for (int x = 0; x < spmap.cols; ++x) { cv::Point_ expected = spmap_template.at >(y, x); cv::Point_ actual = spmap.at >(y, x); int diff = (expected - actual).dot(expected - actual); if (actual != expected) { ts->printf(cvtest::TS::LOG, "\nMeanShiftProc SpMap is bad, diff=%d\n", diff); ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); return; } } } ts->set_failed_test_info(cvtest::TS::OK); } }; TEST(meanShiftProc, accuracy) { CV_GpuMeanShiftProcTest test; test.safe_run(); }