/* ssytrd.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__3 = 3; static integer c__2 = 2; static real c_b22 = -1.f; static real c_b23 = 1.f; /* Subroutine */ int ssytrd_(char *uplo, integer *n, real *a, integer *lda, real *d__, real *e, real *tau, real *work, integer *lwork, integer * info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer i__, j, nb, kk, nx, iws; extern logical lsame_(char *, char *); integer nbmin, iinfo; logical upper; extern /* Subroutine */ int ssytd2_(char *, integer *, real *, integer *, real *, real *, real *, integer *), ssyr2k_(char *, char * , integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *), xerbla_( char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int slatrd_(char *, integer *, integer *, real *, integer *, real *, real *, real *, integer *); integer ldwork, lwkopt; logical lquery; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SSYTRD reduces a real symmetric matrix A to real symmetric */ /* tridiagonal form T by an orthogonal similarity transformation: */ /* Q**T * A * Q = T. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input/output) REAL array, dimension (LDA,N) */ /* On entry, the symmetric matrix A. If UPLO = 'U', the leading */ /* N-by-N upper triangular part of A contains the upper */ /* triangular part of the matrix A, and the strictly lower */ /* triangular part of A is not referenced. If UPLO = 'L', the */ /* leading N-by-N lower triangular part of A contains the lower */ /* triangular part of the matrix A, and the strictly upper */ /* triangular part of A is not referenced. */ /* On exit, if UPLO = 'U', the diagonal and first superdiagonal */ /* of A are overwritten by the corresponding elements of the */ /* tridiagonal matrix T, and the elements above the first */ /* superdiagonal, with the array TAU, represent the orthogonal */ /* matrix Q as a product of elementary reflectors; if UPLO */ /* = 'L', the diagonal and first subdiagonal of A are over- */ /* written by the corresponding elements of the tridiagonal */ /* matrix T, and the elements below the first subdiagonal, with */ /* the array TAU, represent the orthogonal matrix Q as a product */ /* of elementary reflectors. See Further Details. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* D (output) REAL array, dimension (N) */ /* The diagonal elements of the tridiagonal matrix T: */ /* D(i) = A(i,i). */ /* E (output) REAL array, dimension (N-1) */ /* The off-diagonal elements of the tridiagonal matrix T: */ /* E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. */ /* TAU (output) REAL array, dimension (N-1) */ /* The scalar factors of the elementary reflectors (see Further */ /* Details). */ /* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= 1. */ /* For optimum performance LWORK >= N*NB, where NB is the */ /* optimal blocksize. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Further Details */ /* =============== */ /* If UPLO = 'U', the matrix Q is represented as a product of elementary */ /* reflectors */ /* Q = H(n-1) . . . H(2) H(1). */ /* Each H(i) has the form */ /* H(i) = I - tau * v * v' */ /* where tau is a real scalar, and v is a real vector with */ /* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in */ /* A(1:i-1,i+1), and tau in TAU(i). */ /* If UPLO = 'L', the matrix Q is represented as a product of elementary */ /* reflectors */ /* Q = H(1) H(2) . . . H(n-1). */ /* Each H(i) has the form */ /* H(i) = I - tau * v * v' */ /* where tau is a real scalar, and v is a real vector with */ /* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), */ /* and tau in TAU(i). */ /* The contents of A on exit are illustrated by the following examples */ /* with n = 5: */ /* if UPLO = 'U': if UPLO = 'L': */ /* ( d e v2 v3 v4 ) ( d ) */ /* ( d e v3 v4 ) ( e d ) */ /* ( d e v4 ) ( v1 e d ) */ /* ( d e ) ( v1 v2 e d ) */ /* ( d ) ( v1 v2 v3 e d ) */ /* where d and e denote diagonal and off-diagonal elements of T, and vi */ /* denotes an element of the vector defining H(i). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --d__; --e; --tau; --work; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); lquery = *lwork == -1; if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } else if (*lwork < 1 && ! lquery) { *info = -9; } if (*info == 0) { /* Determine the block size. */ nb = ilaenv_(&c__1, "SSYTRD", uplo, n, &c_n1, &c_n1, &c_n1); lwkopt = *n * nb; work[1] = (real) lwkopt; } if (*info != 0) { i__1 = -(*info); xerbla_("SSYTRD", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { work[1] = 1.f; return 0; } nx = *n; iws = 1; if (nb > 1 && nb < *n) { /* Determine when to cross over from blocked to unblocked code */ /* (last block is always handled by unblocked code). */ /* Computing MAX */ i__1 = nb, i__2 = ilaenv_(&c__3, "SSYTRD", uplo, n, &c_n1, &c_n1, & c_n1); nx = max(i__1,i__2); if (nx < *n) { /* Determine if workspace is large enough for blocked code. */ ldwork = *n; iws = ldwork * nb; if (*lwork < iws) { /* Not enough workspace to use optimal NB: determine the */ /* minimum value of NB, and reduce NB or force use of */ /* unblocked code by setting NX = N. */ /* Computing MAX */ i__1 = *lwork / ldwork; nb = max(i__1,1); nbmin = ilaenv_(&c__2, "SSYTRD", uplo, n, &c_n1, &c_n1, &c_n1); if (nb < nbmin) { nx = *n; } } } else { nx = *n; } } else { nb = 1; } if (upper) { /* Reduce the upper triangle of A. */ /* Columns 1:kk are handled by the unblocked method. */ kk = *n - (*n - nx + nb - 1) / nb * nb; i__1 = kk + 1; i__2 = -nb; for (i__ = *n - nb + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Reduce columns i:i+nb-1 to tridiagonal form and form the */ /* matrix W which is needed to update the unreduced part of */ /* the matrix */ i__3 = i__ + nb - 1; slatrd_(uplo, &i__3, &nb, &a[a_offset], lda, &e[1], &tau[1], & work[1], &ldwork); /* Update the unreduced submatrix A(1:i-1,1:i-1), using an */ /* update of the form: A := A - V*W' - W*V' */ i__3 = i__ - 1; ssyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &a[i__ * a_dim1 + 1], lda, &work[1], &ldwork, &c_b23, &a[a_offset], lda); /* Copy superdiagonal elements back into A, and diagonal */ /* elements into D */ i__3 = i__ + nb - 1; for (j = i__; j <= i__3; ++j) { a[j - 1 + j * a_dim1] = e[j - 1]; d__[j] = a[j + j * a_dim1]; /* L10: */ } /* L20: */ } /* Use unblocked code to reduce the last or only block */ ssytd2_(uplo, &kk, &a[a_offset], lda, &d__[1], &e[1], &tau[1], &iinfo); } else { /* Reduce the lower triangle of A */ i__2 = *n - nx; i__1 = nb; for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) { /* Reduce columns i:i+nb-1 to tridiagonal form and form the */ /* matrix W which is needed to update the unreduced part of */ /* the matrix */ i__3 = *n - i__ + 1; slatrd_(uplo, &i__3, &nb, &a[i__ + i__ * a_dim1], lda, &e[i__], & tau[i__], &work[1], &ldwork); /* Update the unreduced submatrix A(i+ib:n,i+ib:n), using */ /* an update of the form: A := A - V*W' - W*V' */ i__3 = *n - i__ - nb + 1; ssyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &a[i__ + nb + i__ * a_dim1], lda, &work[nb + 1], &ldwork, &c_b23, &a[ i__ + nb + (i__ + nb) * a_dim1], lda); /* Copy subdiagonal elements back into A, and diagonal */ /* elements into D */ i__3 = i__ + nb - 1; for (j = i__; j <= i__3; ++j) { a[j + 1 + j * a_dim1] = e[j]; d__[j] = a[j + j * a_dim1]; /* L30: */ } /* L40: */ } /* Use unblocked code to reduce the last or only block */ i__1 = *n - i__ + 1; ssytd2_(uplo, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], &tau[i__], &iinfo); } work[1] = (real) lwkopt; return 0; /* End of SSYTRD */ } /* ssytrd_ */