/* slauu2.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static real c_b7 = 1.f; static integer c__1 = 1; /* Subroutine */ int slauu2_(char *uplo, integer *n, real *a, integer *lda, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer i__; real aii; extern doublereal sdot_(integer *, real *, integer *, real *, integer *); extern logical lsame_(char *, char *); extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), sgemv_(char *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); logical upper; extern /* Subroutine */ int xerbla_(char *, integer *); /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLAUU2 computes the product U * U' or L' * L, where the triangular */ /* factor U or L is stored in the upper or lower triangular part of */ /* the array A. */ /* If UPLO = 'U' or 'u' then the upper triangle of the result is stored, */ /* overwriting the factor U in A. */ /* If UPLO = 'L' or 'l' then the lower triangle of the result is stored, */ /* overwriting the factor L in A. */ /* This is the unblocked form of the algorithm, calling Level 2 BLAS. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the triangular factor stored in the array A */ /* is upper or lower triangular: */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* N (input) INTEGER */ /* The order of the triangular factor U or L. N >= 0. */ /* A (input/output) REAL array, dimension (LDA,N) */ /* On entry, the triangular factor U or L. */ /* On exit, if UPLO = 'U', the upper triangle of A is */ /* overwritten with the upper triangle of the product U * U'; */ /* if UPLO = 'L', the lower triangle of A is overwritten with */ /* the lower triangle of the product L' * L. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -k, the k-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("SLAUU2", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (upper) { /* Compute the product U * U'. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { aii = a[i__ + i__ * a_dim1]; if (i__ < *n) { i__2 = *n - i__ + 1; a[i__ + i__ * a_dim1] = sdot_(&i__2, &a[i__ + i__ * a_dim1], lda, &a[i__ + i__ * a_dim1], lda); i__2 = i__ - 1; i__3 = *n - i__; sgemv_("No transpose", &i__2, &i__3, &c_b7, &a[(i__ + 1) * a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, & aii, &a[i__ * a_dim1 + 1], &c__1); } else { sscal_(&i__, &aii, &a[i__ * a_dim1 + 1], &c__1); } /* L10: */ } } else { /* Compute the product L' * L. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { aii = a[i__ + i__ * a_dim1]; if (i__ < *n) { i__2 = *n - i__ + 1; a[i__ + i__ * a_dim1] = sdot_(&i__2, &a[i__ + i__ * a_dim1], & c__1, &a[i__ + i__ * a_dim1], &c__1); i__2 = *n - i__; i__3 = i__ - 1; sgemv_("Transpose", &i__2, &i__3, &c_b7, &a[i__ + 1 + a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &aii, &a[i__ + a_dim1], lda); } else { sscal_(&i__, &aii, &a[i__ + a_dim1], lda); } /* L20: */ } } return 0; /* End of SLAUU2 */ } /* slauu2_ */