/* sgetrs.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static integer c__1 = 1; static real c_b12 = 1.f; static integer c_n1 = -1; /* Subroutine */ int sgetrs_(char *trans, integer *n, integer *nrhs, real *a, integer *lda, integer *ipiv, real *b, integer *ldb, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1; /* Local variables */ extern logical lsame_(char *, char *); extern /* Subroutine */ int strsm_(char *, char *, char *, char *, integer *, integer *, real *, real *, integer *, real *, integer * ), xerbla_(char *, integer *); logical notran; extern /* Subroutine */ int slaswp_(integer *, real *, integer *, integer *, integer *, integer *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SGETRS solves a system of linear equations */ /* A * X = B or A' * X = B */ /* with a general N-by-N matrix A using the LU factorization computed */ /* by SGETRF. */ /* Arguments */ /* ========= */ /* TRANS (input) CHARACTER*1 */ /* Specifies the form of the system of equations: */ /* = 'N': A * X = B (No transpose) */ /* = 'T': A'* X = B (Transpose) */ /* = 'C': A'* X = B (Conjugate transpose = Transpose) */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrix B. NRHS >= 0. */ /* A (input) REAL array, dimension (LDA,N) */ /* The factors L and U from the factorization A = P*L*U */ /* as computed by SGETRF. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* IPIV (input) INTEGER array, dimension (N) */ /* The pivot indices from SGETRF; for 1<=i<=N, row i of the */ /* matrix was interchanged with row IPIV(i). */ /* B (input/output) REAL array, dimension (LDB,NRHS) */ /* On entry, the right hand side matrix B. */ /* On exit, the solution matrix X. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; /* Function Body */ *info = 0; notran = lsame_(trans, "N"); if (! notran && ! lsame_(trans, "T") && ! lsame_( trans, "C")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -8; } if (*info != 0) { i__1 = -(*info); xerbla_("SGETRS", &i__1); return 0; } /* Quick return if possible */ if (*n == 0 || *nrhs == 0) { return 0; } if (notran) { /* Solve A * X = B. */ /* Apply row interchanges to the right hand sides. */ slaswp_(nrhs, &b[b_offset], ldb, &c__1, n, &ipiv[1], &c__1); /* Solve L*X = B, overwriting B with X. */ strsm_("Left", "Lower", "No transpose", "Unit", n, nrhs, &c_b12, &a[ a_offset], lda, &b[b_offset], ldb); /* Solve U*X = B, overwriting B with X. */ strsm_("Left", "Upper", "No transpose", "Non-unit", n, nrhs, &c_b12, & a[a_offset], lda, &b[b_offset], ldb); } else { /* Solve A' * X = B. */ /* Solve U'*X = B, overwriting B with X. */ strsm_("Left", "Upper", "Transpose", "Non-unit", n, nrhs, &c_b12, &a[ a_offset], lda, &b[b_offset], ldb); /* Solve L'*X = B, overwriting B with X. */ strsm_("Left", "Lower", "Transpose", "Unit", n, nrhs, &c_b12, &a[ a_offset], lda, &b[b_offset], ldb); /* Apply row interchanges to the solution vectors. */ slaswp_(nrhs, &b[b_offset], ldb, &c__1, n, &ipiv[1], &c_n1); } return 0; /* End of SGETRS */ } /* sgetrs_ */