/* dtrtri.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__2 = 2; static doublereal c_b18 = 1.; static doublereal c_b22 = -1.; /* Subroutine */ int dtrtri_(char *uplo, char *diag, integer *n, doublereal * a, integer *lda, integer *info) { /* System generated locals */ address a__1[2]; integer a_dim1, a_offset, i__1, i__2[2], i__3, i__4, i__5; char ch__1[2]; /* Builtin functions */ /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ integer j, jb, nb, nn; extern logical lsame_(char *, char *); extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *), dtrsm_( char *, char *, char *, char *, integer *, integer *, doublereal * , doublereal *, integer *, doublereal *, integer *); logical upper; extern /* Subroutine */ int dtrti2_(char *, char *, integer *, doublereal *, integer *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); logical nounit; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DTRTRI computes the inverse of a real upper or lower triangular */ /* matrix A. */ /* This is the Level 3 BLAS version of the algorithm. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': A is upper triangular; */ /* = 'L': A is lower triangular. */ /* DIAG (input) CHARACTER*1 */ /* = 'N': A is non-unit triangular; */ /* = 'U': A is unit triangular. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ /* On entry, the triangular matrix A. If UPLO = 'U', the */ /* leading N-by-N upper triangular part of the array A contains */ /* the upper triangular matrix, and the strictly lower */ /* triangular part of A is not referenced. If UPLO = 'L', the */ /* leading N-by-N lower triangular part of the array A contains */ /* the lower triangular matrix, and the strictly upper */ /* triangular part of A is not referenced. If DIAG = 'U', the */ /* diagonal elements of A are also not referenced and are */ /* assumed to be 1. */ /* On exit, the (triangular) inverse of the original matrix, in */ /* the same storage format. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, A(i,i) is exactly zero. The triangular */ /* matrix is singular and its inverse can not be computed. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); nounit = lsame_(diag, "N"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (! nounit && ! lsame_(diag, "U")) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } if (*info != 0) { i__1 = -(*info); xerbla_("DTRTRI", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Check for singularity if non-unit. */ if (nounit) { i__1 = *n; for (*info = 1; *info <= i__1; ++(*info)) { if (a[*info + *info * a_dim1] == 0.) { return 0; } /* L10: */ } *info = 0; } /* Determine the block size for this environment. */ /* Writing concatenation */ i__2[0] = 1, a__1[0] = uplo; i__2[1] = 1, a__1[1] = diag; s_cat(ch__1, a__1, i__2, &c__2, (ftnlen)2); nb = ilaenv_(&c__1, "DTRTRI", ch__1, n, &c_n1, &c_n1, &c_n1); if (nb <= 1 || nb >= *n) { /* Use unblocked code */ dtrti2_(uplo, diag, n, &a[a_offset], lda, info); } else { /* Use blocked code */ if (upper) { /* Compute inverse of upper triangular matrix */ i__1 = *n; i__3 = nb; for (j = 1; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) { /* Computing MIN */ i__4 = nb, i__5 = *n - j + 1; jb = min(i__4,i__5); /* Compute rows 1:j-1 of current block column */ i__4 = j - 1; dtrmm_("Left", "Upper", "No transpose", diag, &i__4, &jb, & c_b18, &a[a_offset], lda, &a[j * a_dim1 + 1], lda); i__4 = j - 1; dtrsm_("Right", "Upper", "No transpose", diag, &i__4, &jb, & c_b22, &a[j + j * a_dim1], lda, &a[j * a_dim1 + 1], lda); /* Compute inverse of current diagonal block */ dtrti2_("Upper", diag, &jb, &a[j + j * a_dim1], lda, info); /* L20: */ } } else { /* Compute inverse of lower triangular matrix */ nn = (*n - 1) / nb * nb + 1; i__3 = -nb; for (j = nn; i__3 < 0 ? j >= 1 : j <= 1; j += i__3) { /* Computing MIN */ i__1 = nb, i__4 = *n - j + 1; jb = min(i__1,i__4); if (j + jb <= *n) { /* Compute rows j+jb:n of current block column */ i__1 = *n - j - jb + 1; dtrmm_("Left", "Lower", "No transpose", diag, &i__1, &jb, &c_b18, &a[j + jb + (j + jb) * a_dim1], lda, &a[j + jb + j * a_dim1], lda); i__1 = *n - j - jb + 1; dtrsm_("Right", "Lower", "No transpose", diag, &i__1, &jb, &c_b22, &a[j + j * a_dim1], lda, &a[j + jb + j * a_dim1], lda); } /* Compute inverse of current diagonal block */ dtrti2_("Lower", diag, &jb, &a[j + j * a_dim1], lda, info); /* L30: */ } } } return 0; /* End of DTRTRI */ } /* dtrtri_ */