/* dormbr.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__2 = 2; /* Subroutine */ int dormbr_(char *vect, char *side, char *trans, integer *m, integer *n, integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *c__, integer *ldc, doublereal *work, integer *lwork, integer *info) { /* System generated locals */ address a__1[2]; integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2]; char ch__1[2]; /* Builtin functions */ /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ integer i1, i2, nb, mi, ni, nq, nw; logical left; extern logical lsame_(char *, char *); integer iinfo; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int dormlq_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); logical notran; extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); logical applyq; char transt[1]; integer lwkopt; logical lquery; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C */ /* with */ /* SIDE = 'L' SIDE = 'R' */ /* TRANS = 'N': Q * C C * Q */ /* TRANS = 'T': Q**T * C C * Q**T */ /* If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C */ /* with */ /* SIDE = 'L' SIDE = 'R' */ /* TRANS = 'N': P * C C * P */ /* TRANS = 'T': P**T * C C * P**T */ /* Here Q and P**T are the orthogonal matrices determined by DGEBRD when */ /* reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and */ /* P**T are defined as products of elementary reflectors H(i) and G(i) */ /* respectively. */ /* Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the */ /* order of the orthogonal matrix Q or P**T that is applied. */ /* If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: */ /* if nq >= k, Q = H(1) H(2) . . . H(k); */ /* if nq < k, Q = H(1) H(2) . . . H(nq-1). */ /* If VECT = 'P', A is assumed to have been a K-by-NQ matrix: */ /* if k < nq, P = G(1) G(2) . . . G(k); */ /* if k >= nq, P = G(1) G(2) . . . G(nq-1). */ /* Arguments */ /* ========= */ /* VECT (input) CHARACTER*1 */ /* = 'Q': apply Q or Q**T; */ /* = 'P': apply P or P**T. */ /* SIDE (input) CHARACTER*1 */ /* = 'L': apply Q, Q**T, P or P**T from the Left; */ /* = 'R': apply Q, Q**T, P or P**T from the Right. */ /* TRANS (input) CHARACTER*1 */ /* = 'N': No transpose, apply Q or P; */ /* = 'T': Transpose, apply Q**T or P**T. */ /* M (input) INTEGER */ /* The number of rows of the matrix C. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix C. N >= 0. */ /* K (input) INTEGER */ /* If VECT = 'Q', the number of columns in the original */ /* matrix reduced by DGEBRD. */ /* If VECT = 'P', the number of rows in the original */ /* matrix reduced by DGEBRD. */ /* K >= 0. */ /* A (input) DOUBLE PRECISION array, dimension */ /* (LDA,min(nq,K)) if VECT = 'Q' */ /* (LDA,nq) if VECT = 'P' */ /* The vectors which define the elementary reflectors H(i) and */ /* G(i), whose products determine the matrices Q and P, as */ /* returned by DGEBRD. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. */ /* If VECT = 'Q', LDA >= max(1,nq); */ /* if VECT = 'P', LDA >= max(1,min(nq,K)). */ /* TAU (input) DOUBLE PRECISION array, dimension (min(nq,K)) */ /* TAU(i) must contain the scalar factor of the elementary */ /* reflector H(i) or G(i) which determines Q or P, as returned */ /* by DGEBRD in the array argument TAUQ or TAUP. */ /* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) */ /* On entry, the M-by-N matrix C. */ /* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q */ /* or P*C or P**T*C or C*P or C*P**T. */ /* LDC (input) INTEGER */ /* The leading dimension of the array C. LDC >= max(1,M). */ /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* If SIDE = 'L', LWORK >= max(1,N); */ /* if SIDE = 'R', LWORK >= max(1,M). */ /* For optimum performance LWORK >= N*NB if SIDE = 'L', and */ /* LWORK >= M*NB if SIDE = 'R', where NB is the optimal */ /* blocksize. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --work; /* Function Body */ *info = 0; applyq = lsame_(vect, "Q"); left = lsame_(side, "L"); notran = lsame_(trans, "N"); lquery = *lwork == -1; /* NQ is the order of Q or P and NW is the minimum dimension of WORK */ if (left) { nq = *m; nw = *n; } else { nq = *n; nw = *m; } if (! applyq && ! lsame_(vect, "P")) { *info = -1; } else if (! left && ! lsame_(side, "R")) { *info = -2; } else if (! notran && ! lsame_(trans, "T")) { *info = -3; } else if (*m < 0) { *info = -4; } else if (*n < 0) { *info = -5; } else if (*k < 0) { *info = -6; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = 1, i__2 = min(nq,*k); if (applyq && *lda < max(1,nq) || ! applyq && *lda < max(i__1,i__2)) { *info = -8; } else if (*ldc < max(1,*m)) { *info = -11; } else if (*lwork < max(1,nw) && ! lquery) { *info = -13; } } if (*info == 0) { if (applyq) { if (left) { /* Writing concatenation */ i__3[0] = 1, a__1[0] = side; i__3[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); i__1 = *m - 1; i__2 = *m - 1; nb = ilaenv_(&c__1, "DORMQR", ch__1, &i__1, n, &i__2, &c_n1); } else { /* Writing concatenation */ i__3[0] = 1, a__1[0] = side; i__3[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); i__1 = *n - 1; i__2 = *n - 1; nb = ilaenv_(&c__1, "DORMQR", ch__1, m, &i__1, &i__2, &c_n1); } } else { if (left) { /* Writing concatenation */ i__3[0] = 1, a__1[0] = side; i__3[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); i__1 = *m - 1; i__2 = *m - 1; nb = ilaenv_(&c__1, "DORMLQ", ch__1, &i__1, n, &i__2, &c_n1); } else { /* Writing concatenation */ i__3[0] = 1, a__1[0] = side; i__3[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); i__1 = *n - 1; i__2 = *n - 1; nb = ilaenv_(&c__1, "DORMLQ", ch__1, m, &i__1, &i__2, &c_n1); } } lwkopt = max(1,nw) * nb; work[1] = (doublereal) lwkopt; } if (*info != 0) { i__1 = -(*info); xerbla_("DORMBR", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ work[1] = 1.; if (*m == 0 || *n == 0) { return 0; } if (applyq) { /* Apply Q */ if (nq >= *k) { /* Q was determined by a call to DGEBRD with nq >= k */ dormqr_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[ c_offset], ldc, &work[1], lwork, &iinfo); } else if (nq > 1) { /* Q was determined by a call to DGEBRD with nq < k */ if (left) { mi = *m - 1; ni = *n; i1 = 2; i2 = 1; } else { mi = *m; ni = *n - 1; i1 = 1; i2 = 2; } i__1 = nq - 1; dormqr_(side, trans, &mi, &ni, &i__1, &a[a_dim1 + 2], lda, &tau[1] , &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo); } } else { /* Apply P */ if (notran) { *(unsigned char *)transt = 'T'; } else { *(unsigned char *)transt = 'N'; } if (nq > *k) { /* P was determined by a call to DGEBRD with nq > k */ dormlq_(side, transt, m, n, k, &a[a_offset], lda, &tau[1], &c__[ c_offset], ldc, &work[1], lwork, &iinfo); } else if (nq > 1) { /* P was determined by a call to DGEBRD with nq <= k */ if (left) { mi = *m - 1; ni = *n; i1 = 2; i2 = 1; } else { mi = *m; ni = *n - 1; i1 = 1; i2 = 2; } i__1 = nq - 1; dormlq_(side, transt, &mi, &ni, &i__1, &a[(a_dim1 << 1) + 1], lda, &tau[1], &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, & iinfo); } } work[1] = (doublereal) lwkopt; return 0; /* End of DORMBR */ } /* dormbr_ */