/* dlasd5.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Subroutine */ int dlasd5_(integer *i__, doublereal *d__, doublereal *z__, doublereal *delta, doublereal *rho, doublereal *dsigma, doublereal * work) { /* System generated locals */ doublereal d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ doublereal b, c__, w, del, tau, delsq; /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* This subroutine computes the square root of the I-th eigenvalue */ /* of a positive symmetric rank-one modification of a 2-by-2 diagonal */ /* matrix */ /* diag( D ) * diag( D ) + RHO * Z * transpose(Z) . */ /* The diagonal entries in the array D are assumed to satisfy */ /* 0 <= D(i) < D(j) for i < j . */ /* We also assume RHO > 0 and that the Euclidean norm of the vector */ /* Z is one. */ /* Arguments */ /* ========= */ /* I (input) INTEGER */ /* The index of the eigenvalue to be computed. I = 1 or I = 2. */ /* D (input) DOUBLE PRECISION array, dimension ( 2 ) */ /* The original eigenvalues. We assume 0 <= D(1) < D(2). */ /* Z (input) DOUBLE PRECISION array, dimension ( 2 ) */ /* The components of the updating vector. */ /* DELTA (output) DOUBLE PRECISION array, dimension ( 2 ) */ /* Contains (D(j) - sigma_I) in its j-th component. */ /* The vector DELTA contains the information necessary */ /* to construct the eigenvectors. */ /* RHO (input) DOUBLE PRECISION */ /* The scalar in the symmetric updating formula. */ /* DSIGMA (output) DOUBLE PRECISION */ /* The computed sigma_I, the I-th updated eigenvalue. */ /* WORK (workspace) DOUBLE PRECISION array, dimension ( 2 ) */ /* WORK contains (D(j) + sigma_I) in its j-th component. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Ren-Cang Li, Computer Science Division, University of California */ /* at Berkeley, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --work; --delta; --z__; --d__; /* Function Body */ del = d__[2] - d__[1]; delsq = del * (d__[2] + d__[1]); if (*i__ == 1) { w = *rho * 4. * (z__[2] * z__[2] / (d__[1] + d__[2] * 3.) - z__[1] * z__[1] / (d__[1] * 3. + d__[2])) / del + 1.; if (w > 0.) { b = delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]); c__ = *rho * z__[1] * z__[1] * delsq; /* B > ZERO, always */ /* The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 ) */ tau = c__ * 2. / (b + sqrt((d__1 = b * b - c__ * 4., abs(d__1)))); /* The following TAU is DSIGMA - D( 1 ) */ tau /= d__[1] + sqrt(d__[1] * d__[1] + tau); *dsigma = d__[1] + tau; delta[1] = -tau; delta[2] = del - tau; work[1] = d__[1] * 2. + tau; work[2] = d__[1] + tau + d__[2]; /* DELTA( 1 ) = -Z( 1 ) / TAU */ /* DELTA( 2 ) = Z( 2 ) / ( DEL-TAU ) */ } else { b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]); c__ = *rho * z__[2] * z__[2] * delsq; /* The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */ if (b > 0.) { tau = c__ * -2. / (b + sqrt(b * b + c__ * 4.)); } else { tau = (b - sqrt(b * b + c__ * 4.)) / 2.; } /* The following TAU is DSIGMA - D( 2 ) */ tau /= d__[2] + sqrt((d__1 = d__[2] * d__[2] + tau, abs(d__1))); *dsigma = d__[2] + tau; delta[1] = -(del + tau); delta[2] = -tau; work[1] = d__[1] + tau + d__[2]; work[2] = d__[2] * 2. + tau; /* DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU ) */ /* DELTA( 2 ) = -Z( 2 ) / TAU */ } /* TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) ) */ /* DELTA( 1 ) = DELTA( 1 ) / TEMP */ /* DELTA( 2 ) = DELTA( 2 ) / TEMP */ } else { /* Now I=2 */ b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]); c__ = *rho * z__[2] * z__[2] * delsq; /* The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */ if (b > 0.) { tau = (b + sqrt(b * b + c__ * 4.)) / 2.; } else { tau = c__ * 2. / (-b + sqrt(b * b + c__ * 4.)); } /* The following TAU is DSIGMA - D( 2 ) */ tau /= d__[2] + sqrt(d__[2] * d__[2] + tau); *dsigma = d__[2] + tau; delta[1] = -(del + tau); delta[2] = -tau; work[1] = d__[1] + tau + d__[2]; work[2] = d__[2] * 2. + tau; /* DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU ) */ /* DELTA( 2 ) = -Z( 2 ) / TAU */ /* TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) ) */ /* DELTA( 1 ) = DELTA( 1 ) / TEMP */ /* DELTA( 2 ) = DELTA( 2 ) / TEMP */ } return 0; /* End of DLASD5 */ } /* dlasd5_ */