/* * BackgroundSubtractorGBH_test.cpp * * Created on: Jun 14, 2012 * Author: andrewgodbehere */ #include "test_precomp.hpp" using namespace cv; class CV_BackgroundSubtractorTest : public cvtest::BaseTest { public: CV_BackgroundSubtractorTest(); protected: void run(int); }; CV_BackgroundSubtractorTest::CV_BackgroundSubtractorTest() { } /** * This test checks the following: * (i) BackgroundSubtractorGMG can operate with matrices of various types and sizes * (ii) Training mode returns empty fgmask * (iii) End of training mode, and anomalous frame yields every pixel detected as FG */ void CV_BackgroundSubtractorTest::run(int) { int code = cvtest::TS::OK; RNG& rng = ts->get_rng(); int type = ((unsigned int)rng)%7; //!< pick a random type, 0 - 6, defined in types_c.h int channels = 1 + ((unsigned int)rng)%4; //!< random number of channels from 1 to 4. int channelsAndType = CV_MAKETYPE(type,channels); int width = 2 + ((unsigned int)rng)%98; //!< Mat will be 2 to 100 in width and height int height = 2 + ((unsigned int)rng)%98; Ptr fgbg = createBackgroundSubtractorGMG(); Mat fgmask; if (fgbg.empty()) CV_Error(Error::StsError,"Failed to create Algorithm\n"); /** * Set a few parameters */ fgbg->setSmoothingRadius(7); fgbg->setDecisionThreshold(0.7); fgbg->setNumFrames(120); /** * Generate bounds for the values in the matrix for each type */ double maxd = 0, mind = 0; /** * Max value for simulated images picked randomly in upper half of type range * Min value for simulated images picked randomly in lower half of type range */ if (type == CV_8U) { uchar half = UCHAR_MAX/2; maxd = (unsigned char)rng.uniform(half+32, UCHAR_MAX); mind = (unsigned char)rng.uniform(0, half-32); } else if (type == CV_8S) { maxd = (char)rng.uniform(32, CHAR_MAX); mind = (char)rng.uniform(CHAR_MIN, -32); } else if (type == CV_16U) { ushort half = USHRT_MAX/2; maxd = (unsigned int)rng.uniform(half+32, USHRT_MAX); mind = (unsigned int)rng.uniform(0, half-32); } else if (type == CV_16S) { maxd = rng.uniform(32, SHRT_MAX); mind = rng.uniform(SHRT_MIN, -32); } else if (type == CV_32S) { maxd = rng.uniform(32, INT_MAX); mind = rng.uniform(INT_MIN, -32); } else if (type == CV_32F) { maxd = rng.uniform(32.0f, FLT_MAX); mind = rng.uniform(-FLT_MAX, -32.0f); } else if (type == CV_64F) { maxd = rng.uniform(32.0, DBL_MAX); mind = rng.uniform(-DBL_MAX, -32.0); } fgbg->setMinVal(mind); fgbg->setMaxVal(maxd); Mat simImage = Mat::zeros(height, width, channelsAndType); int numLearningFrames = 120; for (int i = 0; i < numLearningFrames; ++i) { /** * Genrate simulated "image" for any type. Values always confined to upper half of range. */ rng.fill(simImage, RNG::UNIFORM, (mind + maxd)*0.5, maxd); /** * Feed simulated images into background subtractor */ fgbg->apply(simImage,fgmask); Mat fullbg = Mat::zeros(simImage.rows, simImage.cols, CV_8U); //! fgmask should be entirely background during training code = cvtest::cmpEps2( ts, fgmask, fullbg, 0, false, "The training foreground mask" ); if (code < 0) ts->set_failed_test_info( code ); } //! generate last image, distinct from training images rng.fill(simImage, RNG::UNIFORM, mind, maxd); fgbg->apply(simImage,fgmask); //! now fgmask should be entirely foreground Mat fullfg = 255*Mat::ones(simImage.rows, simImage.cols, CV_8U); code = cvtest::cmpEps2( ts, fgmask, fullfg, 255, false, "The final foreground mask" ); if (code < 0) { ts->set_failed_test_info( code ); } } TEST(VIDEO_BGSUBGMG, accuracy) { CV_BackgroundSubtractorTest test; test.safe_run(); }