/* * matching_test.cpp * * Created on: Oct 17, 2010 * Author: ethan */ #include #include #include #include #include #include using namespace cv; using std::cout; using std::cerr; using std::endl; using std::vector; void help(char **av) { cerr << "usage: " << av[0] << " im1.jpg im2.jpg" << "\n" << "This program shows how to use BRIEF descriptor to match points in features2d\n" << "It takes in two images, finds keypoints and matches them displaying matches and final homography warped results\n" << endl; } //Copy (x,y) location of descriptor matches found from KeyPoint data structures into Point2f vectors void matches2points(const vector& matches, const vector& kpts_train, const vector& kpts_query, vector& pts_train, vector& pts_query) { pts_train.clear(); pts_query.clear(); pts_train.reserve(matches.size()); pts_query.reserve(matches.size()); for (size_t i = 0; i < matches.size(); i++) { const DMatch& match = matches[i]; pts_query.push_back(kpts_query[match.queryIdx].pt); pts_train.push_back(kpts_train[match.trainIdx].pt); } } double match(const vector& /*kpts_train*/, const vector& /*kpts_query*/, DescriptorMatcher& matcher, const Mat& train, const Mat& query, vector& matches) { double t = (double)getTickCount(); matcher.match(query, train, matches); //Using features2d return ((double)getTickCount() - t) / getTickFrequency(); } int main(int ac, char ** av) { if (ac != 3) { help(av); return 1; } string im1_name, im2_name; im1_name = av[1]; im2_name = av[2]; Mat im1 = imread(im1_name, CV_LOAD_IMAGE_GRAYSCALE); Mat im2 = imread(im2_name, CV_LOAD_IMAGE_GRAYSCALE); if (im1.empty() || im2.empty()) { cerr << "could not open one of the images..." << endl; return 1; } double t = (double)getTickCount(); FastFeatureDetector detector(50); BriefDescriptorExtractor extractor(32); //this is really 32 x 8 matches since they are binary matches packed into bytes vector kpts_1, kpts_2; detector.detect(im1, kpts_1); detector.detect(im2, kpts_2); t = ((double)getTickCount() - t) / getTickFrequency(); cout << "found " << kpts_1.size() << " keypoints in " << im1_name << endl << "fount " << kpts_2.size() << " keypoints in " << im2_name << endl << "took " << t << " seconds." << endl; Mat desc_1, desc_2; cout << "computing descriptors..." << endl; t = (double)getTickCount(); extractor.compute(im1, kpts_1, desc_1); extractor.compute(im2, kpts_2, desc_2); t = ((double)getTickCount() - t) / getTickFrequency(); cout << "done computing descriptors... took " << t << " seconds" << endl; //Do matching with 2 methods using features2d cout << "matching with BruteForceMatcher" << endl; BruteForceMatcher matcher; vector matches_lut; float lut_time = (float)match(kpts_1, kpts_2, matcher, desc_1, desc_2, matches_lut); cout << "done BruteForceMatcher matching. took " << lut_time << " seconds" << endl; cout << "matching with BruteForceMatcher" << endl; BruteForceMatcher matcher_popcount; vector matches_popcount; double pop_time = match(kpts_1, kpts_2, matcher_popcount, desc_1, desc_2, matches_popcount); cout << "done BruteForceMatcher matching. took " << pop_time << " seconds" << endl; vector mpts_1, mpts_2; matches2points(matches_popcount, kpts_1, kpts_2, mpts_1, mpts_2); //Extract a list of the (x,y) location of the matches vector outlier_mask; Mat H = findHomography(Mat(mpts_2), Mat(mpts_1), outlier_mask, RANSAC, 1); Mat outimg; drawMatches(im2, kpts_2, im1, kpts_1, matches_popcount, outimg, Scalar::all(-1), Scalar::all(-1), reinterpret_cast&> (outlier_mask)); imshow("matches - popcount - outliers removed", outimg); Mat warped; warpPerspective(im2, warped, H, im1.size()); imshow("warped", warped); imshow("diff", im1 - warped); waitKey(); return 0; }