#/usr/bin/env python import sys import math import time import random import numpy import transformations import cv2.cv as cv def clamp(a, x, b): return numpy.maximum(a, numpy.minimum(x, b)) def norm(v): mag = numpy.sqrt(sum([e * e for e in v])) return v / mag class Vec3: def __init__(self, x, y, z): self.v = (x, y, z) def x(self): return self.v[0] def y(self): return self.v[1] def z(self): return self.v[2] def __repr__(self): return "" % tuple([repr(c) for c in self.v]) def __add__(self, other): return Vec3(*[self.v[i] + other.v[i] for i in range(3)]) def __sub__(self, other): return Vec3(*[self.v[i] - other.v[i] for i in range(3)]) def __mul__(self, other): if isinstance(other, Vec3): return Vec3(*[self.v[i] * other.v[i] for i in range(3)]) else: return Vec3(*[self.v[i] * other for i in range(3)]) def mag2(self): return sum([e * e for e in self.v]) def __abs__(self): return numpy.sqrt(sum([e * e for e in self.v])) def norm(self): return self * (1.0 / abs(self)) def dot(self, other): return sum([self.v[i] * other.v[i] for i in range(3)]) def cross(self, other): (ax, ay, az) = self.v (bx, by, bz) = other.v return Vec3(ay * bz - by * az, az * bx - bz * ax, ax * by - bx * ay) class Ray: def __init__(self, o, d): self.o = o self.d = d def project(self, d): return self.o + self.d * d class Camera: def __init__(self, F): R = Vec3(1., 0., 0.) U = Vec3(0, 1., 0) self.center = Vec3(0, 0, 0) self.pcenter = Vec3(0, 0, F) self.up = U self.right = R def genray(self, x, y): """ -1 <= y <= 1 """ r = numpy.sqrt(x * x + y * y) if 0: rprime = r + (0.17 * r**2) else: rprime = (10 * numpy.sqrt(17 * r + 25) - 50) / 17 print "scale", rprime / r x *= rprime / r y *= rprime / r o = self.center r = (self.pcenter + (self.right * x) + (self.up * y)) - o return Ray(o, r.norm()) class Sphere: def __init__(self, center, radius): self.center = center self.radius = radius def hit(self, r): # a = mag2(r.d) a = 1. v = r.o - self.center b = 2 * r.d.dot(v) c = self.center.mag2() + r.o.mag2() + -2 * self.center.dot(r.o) - (self.radius ** 2) det = (b * b) - (4 * c) pred = 0 < det sq = numpy.sqrt(abs(det)) h0 = (-b - sq) / (2) h1 = (-b + sq) / (2) h = numpy.minimum(h0, h1) pred = pred & (h > 0) normal = (r.project(h) - self.center) * (1.0 / self.radius) return (pred, numpy.where(pred, h, 999999.), normal) def pt2plane(p, plane): return p.dot(plane) * (1. / abs(plane)) class Plane: def __init__(self, p, n, right): self.D = -pt2plane(p, n) self.Pn = n self.right = right self.rightD = -pt2plane(p, right) self.up = n.cross(right) self.upD = -pt2plane(p, self.up) def hit(self, r): Vd = self.Pn.dot(r.d) V0 = -(self.Pn.dot(r.o) + self.D) h = V0 / Vd pred = (0 <= h) return (pred, numpy.where(pred, h, 999999.), self.Pn) def localxy(self, loc): x = (loc.dot(self.right) + self.rightD) y = (loc.dot(self.up) + self.upD) return (x, y) # lena = numpy.fromstring(cv.LoadImage("../samples/c/lena.jpg", 0).tostring(), numpy.uint8) / 255.0 def texture(xy): x,y = xy xa = numpy.floor(x * 512) ya = numpy.floor(y * 512) a = (512 * ya) + xa safe = (0 <= x) & (0 <= y) & (x < 1) & (y < 1) if 0: a = numpy.where(safe, a, 0).astype(numpy.int) return numpy.where(safe, numpy.take(lena, a), 0.0) else: xi = numpy.floor(x * 11).astype(numpy.int) yi = numpy.floor(y * 11).astype(numpy.int) inside = (1 <= xi) & (xi < 10) & (2 <= yi) & (yi < 9) checker = (xi & 1) ^ (yi & 1) final = numpy.where(inside, checker, 1.0) return numpy.where(safe, final, 0.5) def under(vv, m): return Vec3(*(numpy.dot(m, vv.v + (1,))[:3])) class Renderer: def __init__(self, w, h, oversample): self.w = w self.h = h random.seed(1) x = numpy.arange(self.w*self.h) % self.w y = numpy.floor(numpy.arange(self.w*self.h) / self.w) h2 = h / 2.0 w2 = w / 2.0 self.r = [ None ] * oversample for o in range(oversample): stoch_x = numpy.random.rand(self.w * self.h) stoch_y = numpy.random.rand(self.w * self.h) nx = (x + stoch_x - 0.5 - w2) / h2 ny = (y + stoch_y - 0.5 - h2) / h2 self.r[o] = cam.genray(nx, ny) self.rnds = [random.random() for i in range(10)] def frame(self, i): rnds = self.rnds roll = math.sin(i * .01 * rnds[0] + rnds[1]) pitch = math.sin(i * .01 * rnds[2] + rnds[3]) yaw = math.pi * math.sin(i * .01 * rnds[4] + rnds[5]) x = math.sin(i * 0.01 * rnds[6]) y = math.sin(i * 0.01 * rnds[7]) x,y,z = -0.5,0.5,1 roll,pitch,yaw = (0,0,0) z = 4 + 3 * math.sin(i * 0.1 * rnds[8]) print z rz = transformations.euler_matrix(roll, pitch, yaw) p = Plane(Vec3(x, y, z), under(Vec3(0,0,-1), rz), under(Vec3(1, 0, 0), rz)) acc = 0 for r in self.r: (pred, h, norm) = p.hit(r) l = numpy.where(pred, texture(p.localxy(r.project(h))), 0.0) acc += l acc *= (1.0 / len(self.r)) # print "took", time.time() - st img = cv.CreateMat(self.h, self.w, cv.CV_8UC1) cv.SetData(img, (clamp(0, acc, 1) * 255).astype(numpy.uint8).tostring(), self.w) return img ######################################################################### num_x_ints = 8 num_y_ints = 6 num_pts = num_x_ints * num_y_ints def get_corners(mono, refine = False): (ok, corners) = cv.FindChessboardCorners(mono, (num_x_ints, num_y_ints), cv.CV_CALIB_CB_ADAPTIVE_THRESH | cv.CV_CALIB_CB_NORMALIZE_IMAGE) if refine and ok: corners = cv.FindCornerSubPix(mono, corners, (5,5), (-1,-1), ( cv.CV_TERMCRIT_EPS+cv.CV_TERMCRIT_ITER, 30, 0.1 )) return (ok, corners) def mk_object_points(nimages, squaresize = 1): opts = cv.CreateMat(nimages * num_pts, 3, cv.CV_32FC1) for i in range(nimages): for j in range(num_pts): opts[i * num_pts + j, 0] = (j / num_x_ints) * squaresize opts[i * num_pts + j, 1] = (j % num_x_ints) * squaresize opts[i * num_pts + j, 2] = 0 return opts def mk_image_points(goodcorners): ipts = cv.CreateMat(len(goodcorners) * num_pts, 2, cv.CV_32FC1) for (i, co) in enumerate(goodcorners): for j in range(num_pts): ipts[i * num_pts + j, 0] = co[j][0] ipts[i * num_pts + j, 1] = co[j][1] return ipts def mk_point_counts(nimages): npts = cv.CreateMat(nimages, 1, cv.CV_32SC1) for i in range(nimages): npts[i, 0] = num_pts return npts def cvmat_iterator(cvmat): for i in range(cvmat.rows): for j in range(cvmat.cols): yield cvmat[i,j] cam = Camera(3.0) rend = Renderer(640, 480, 2) cv.NamedWindow("snap") #images = [rend.frame(i) for i in range(0, 2000, 400)] images = [rend.frame(i) for i in [1200]] if 0: for i,img in enumerate(images): cv.SaveImage("final/%06d.png" % i, img) size = cv.GetSize(images[0]) corners = [get_corners(i) for i in images] goodcorners = [co for (im, (ok, co)) in zip(images, corners) if ok] def checkerboard_error(xformed): def pt2line(a, b, c): x0,y0 = a x1,y1 = b x2,y2 = c return abs((x2 - x1) * (y1 - y0) - (x1 - x0) * (y2 - y1)) / math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) errorsum = 0. for im in xformed: for row in range(6): l0 = im[8 * row] l1 = im[8 * row + 7] for col in range(1, 7): e = pt2line(im[8 * row + col], l0, l1) #print "row", row, "e", e errorsum += e return errorsum if True: from scipy.optimize import fmin def xf(pt, poly): x, y = pt r = math.sqrt((x - 320) ** 2 + (y - 240) ** 2) fr = poly(r) / r return (320 + (x - 320) * fr, 240 + (y - 240) * fr) def silly(p, goodcorners): # print "eval", p d = 1.0 # - sum(p) poly = numpy.poly1d(list(p) + [d, 0.]) xformed = [[xf(pt, poly) for pt in co] for co in goodcorners] return checkerboard_error(xformed) x0 = [ 0. ] #print silly(x0, goodcorners) print "initial error", silly(x0, goodcorners) xopt = fmin(silly, x0, args=(goodcorners,)) print "xopt", xopt print "final error", silly(xopt, goodcorners) d = 1.0 # - sum(xopt) poly = numpy.poly1d(list(xopt) + [d, 0.]) print "final polynomial" print poly for co in goodcorners: scrib = cv.CreateMat(480, 640, cv.CV_8UC3) cv.SetZero(scrib) cv.DrawChessboardCorners(scrib, (num_x_ints, num_y_ints), [xf(pt, poly) for pt in co], True) cv.ShowImage("snap", scrib) cv.WaitKey() sys.exit(0) for (i, (img, (ok, co))) in enumerate(zip(images, corners)): scrib = cv.CreateMat(img.rows, img.cols, cv.CV_8UC3) cv.CvtColor(img, scrib, cv.CV_GRAY2BGR) if ok: cv.DrawChessboardCorners(scrib, (num_x_ints, num_y_ints), co, True) cv.ShowImage("snap", scrib) cv.WaitKey() print len(goodcorners) ipts = mk_image_points(goodcorners) opts = mk_object_points(len(goodcorners), .1) npts = mk_point_counts(len(goodcorners)) intrinsics = cv.CreateMat(3, 3, cv.CV_64FC1) distortion = cv.CreateMat(4, 1, cv.CV_64FC1) cv.SetZero(intrinsics) cv.SetZero(distortion) # focal lengths have 1/1 ratio intrinsics[0,0] = 1.0 intrinsics[1,1] = 1.0 cv.CalibrateCamera2(opts, ipts, npts, cv.GetSize(images[0]), intrinsics, distortion, cv.CreateMat(len(goodcorners), 3, cv.CV_32FC1), cv.CreateMat(len(goodcorners), 3, cv.CV_32FC1), flags = 0) # cv.CV_CALIB_ZERO_TANGENT_DIST) print "D =", list(cvmat_iterator(distortion)) print "K =", list(cvmat_iterator(intrinsics)) mapx = cv.CreateImage((640, 480), cv.IPL_DEPTH_32F, 1) mapy = cv.CreateImage((640, 480), cv.IPL_DEPTH_32F, 1) cv.InitUndistortMap(intrinsics, distortion, mapx, mapy) for img in images: r = cv.CloneMat(img) cv.Remap(img, r, mapx, mapy) cv.ShowImage("snap", r) cv.WaitKey()