Soft Cascade Training ======================= .. highlight:: cpp Soft Cascade Detector Training -------------------------------------------- softcascade::Octave ------------------- .. ocv:class:: softcascade::Octave : public Algorithm Public interface for soft cascade training algorithm. :: class Octave : public Algorithm { public: enum { // Direct backward pruning. (Cha Zhang and Paul Viola) DBP = 1, // Multiple instance pruning. (Cha Zhang and Paul Viola) MIP = 2, // Originally proposed by L. Bourdev and J. Brandt HEURISTIC = 4 }; virtual ~Octave(); static cv::Ptr create(cv::Rect boundingBox, int npositives, int nnegatives, int logScale, int shrinkage); virtual bool train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth) = 0; virtual void setRejectThresholds(OutputArray thresholds) = 0; virtual void write( cv::FileStorage &fs, const FeaturePool* pool, InputArray thresholds) const = 0; virtual void write( CvFileStorage* fs, String name) const = 0; }; softcascade::Octave::~Octave --------------------------------------- Destructor for Octave. .. ocv:function:: softcascade::Octave::~Octave() softcascade::Octave::train -------------------------- .. ocv:function:: bool softcascade::Octave::train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth) :param dataset an object that allows communicate for training set. :param pool an object that presents feature pool. :param weaks a number of weak trees should be trained. :param treeDepth a depth of resulting weak trees. softcascade::Octave::setRejectThresholds ---------------------------------------- .. ocv:function:: void softcascade::Octave::setRejectThresholds(OutputArray thresholds) :param thresholds an output array of resulted rejection vector. Have same size as number of trained stages. softcascade::Octave::write -------------------------- .. ocv:function:: void softcascade::Octave::train(cv::FileStorage &fs, const FeaturePool* pool, InputArray thresholds) const .. ocv:function:: void softcascade::Octave::train( CvFileStorage* fs, String name) const :param fs an output file storage to store trained detector. :param pool an object that presents feature pool. :param dataset a rejection vector that should be included in detector xml file. :param name a name of root node for trained detector. softcascade::FeaturePool ------------------------ .. ocv:class:: softcascade::FeaturePool Public interface for feature pool. This is a hight level abstraction for training random feature pool. :: class FeaturePool { public: virtual int size() const = 0; virtual float apply(int fi, int si, const Mat& channels) const = 0; virtual void write( cv::FileStorage& fs, int index) const = 0; virtual ~FeaturePool(); }; softcascade::FeaturePool::size ------------------------------ Returns size of feature pool. .. ocv:function:: int softcascade::FeaturePool::size() const softcascade::FeaturePool::~FeaturePool -------------------------------------- FeaturePool destructor. .. ocv:function:: softcascade::FeaturePool::~FeaturePool() softcascade::FeaturePool::write ------------------------------- Write specified feature from feature pool to file storage. .. ocv:function:: void softcascade::FeaturePool::write( cv::FileStorage& fs, int index) const :param fs an output file storage to store feature. :param index an index of feature that should be stored. softcascade::FeaturePool::apply ------------------------------- Compute feature on integral channel image. .. ocv:function:: float softcascade::FeaturePool::apply(int fi, int si, const Mat& channels) const :param fi an index of feature that should be computed. :param si an index of sample. :param fs a channel matrix.