/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include using namespace std; /* ///////////////////// simpleflow_test ///////////////////////// */ class CV_SimpleFlowTest : public cvtest::BaseTest { public: CV_SimpleFlowTest(); protected: void run(int); }; CV_SimpleFlowTest::CV_SimpleFlowTest() {} static bool readOpticalFlowFromFile(FILE* file, cv::Mat& flow) { char header[5]; if (fread(header, 1, 4, file) < 4 && (string)header != "PIEH") { return false; } int cols, rows; if (fread(&cols, sizeof(int), 1, file) != 1|| fread(&rows, sizeof(int), 1, file) != 1) { return false; } flow = cv::Mat::zeros(rows, cols, CV_32FC2); for (int i = 0; i < rows; ++i) { for (int j = 0; j < cols; ++j) { cv::Vec2f flow_at_point; if (fread(&(flow_at_point[0]), sizeof(float), 1, file) != 1 || fread(&(flow_at_point[1]), sizeof(float), 1, file) != 1) { return false; } flow.at(i, j) = flow_at_point; } } return true; } static bool isFlowCorrect(float u) { return !cvIsNaN(u) && (fabs(u) < 1e9); } static float calc_rmse(cv::Mat flow1, cv::Mat flow2) { float sum = 0; int counter = 0; const int rows = flow1.rows; const int cols = flow1.cols; for (int y = 0; y < rows; ++y) { for (int x = 0; x < cols; ++x) { cv::Vec2f flow1_at_point = flow1.at(y, x); cv::Vec2f flow2_at_point = flow2.at(y, x); float u1 = flow1_at_point[0]; float v1 = flow1_at_point[1]; float u2 = flow2_at_point[0]; float v2 = flow2_at_point[1]; if (isFlowCorrect(u1) && isFlowCorrect(u2) && isFlowCorrect(v1) && isFlowCorrect(v2)) { sum += (u1-u2)*(u1-u2) + (v1-v2)*(v1-v2); counter++; } } } return (float)sqrt(sum / (1e-9 + counter)); } void CV_SimpleFlowTest::run(int) { const float MAX_RMSE = 0.6f; const string frame1_path = ts->get_data_path() + "optflow/RubberWhale1.png"; const string frame2_path = ts->get_data_path() + "optflow/RubberWhale2.png"; const string gt_flow_path = ts->get_data_path() + "optflow/RubberWhale.flo"; cv::Mat frame1 = cv::imread(frame1_path); cv::Mat frame2 = cv::imread(frame2_path); if (frame1.empty()) { ts->printf(cvtest::TS::LOG, "could not read image %s\n", frame2_path.c_str()); ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); return; } if (frame2.empty()) { ts->printf(cvtest::TS::LOG, "could not read image %s\n", frame2_path.c_str()); ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); return; } if (frame1.rows != frame2.rows && frame1.cols != frame2.cols) { ts->printf(cvtest::TS::LOG, "images should be of equal sizes (%s and %s)", frame1_path.c_str(), frame2_path.c_str()); ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); return; } if (frame1.type() != 16 || frame2.type() != 16) { ts->printf(cvtest::TS::LOG, "images should be of equal type CV_8UC3 (%s and %s)", frame1_path.c_str(), frame2_path.c_str()); ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); return; } cv::Mat flow_gt; FILE* gt_flow_file = fopen(gt_flow_path.c_str(), "rb"); if (gt_flow_file == NULL) { ts->printf(cvtest::TS::LOG, "could not read ground-thuth flow from file %s", gt_flow_path.c_str()); ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); return; } if (!readOpticalFlowFromFile(gt_flow_file, flow_gt)) { ts->printf(cvtest::TS::LOG, "error while reading flow data from file %s", gt_flow_path.c_str()); ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); return; } fclose(gt_flow_file); cv::Mat flow; cv::calcOpticalFlowSF(frame1, frame2, flow, 3, 2, 4); float rmse = calc_rmse(flow_gt, flow); ts->printf(cvtest::TS::LOG, "Optical flow estimation RMSE for SimpleFlow algorithm : %lf\n", rmse); if (rmse > MAX_RMSE) { ts->printf( cvtest::TS::LOG, "Too big rmse error : %lf ( >= %lf )\n", rmse, MAX_RMSE); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); return; } } TEST(Video_OpticalFlowSimpleFlow, accuracy) { CV_SimpleFlowTest test; test.safe_run(); } /* End of file. */