#include "perf_precomp.hpp" #include #include "opencv2/ts/ocl_perf.hpp" using namespace std; using namespace cv; using namespace perf; using std::tr1::make_tuple; using std::tr1::get; typedef std::tr1::tuple Cascade_Image_MinSize_t; typedef perf::TestBaseWithParam Cascade_Image_MinSize; #ifdef HAVE_OPENCL OCL_PERF_TEST_P(Cascade_Image_MinSize, CascadeClassifier, testing::Combine( testing::Values( string("cv/cascadeandhog/cascades/haarcascade_frontalface_alt.xml"), string("cv/cascadeandhog/cascades/haarcascade_frontalface_alt_old.xml"), string("cv/cascadeandhog/cascades/lbpcascade_frontalface.xml") ), testing::Values( string("cv/shared/lena.png"), string("cv/cascadeandhog/images/bttf301.png"), string("cv/cascadeandhog/images/class57.png") ), testing::Values(30, 64, 90) ) ) { const string cascasePath = get<0>(GetParam()); const string imagePath = get<1>(GetParam()); int min_size = get<2>(GetParam()); Size minSize(min_size, min_size); CascadeClassifier cc( getDataPath(cascasePath) ); if (cc.empty()) FAIL() << "Can't load cascade file: " << getDataPath(cascasePath); Mat img = imread(getDataPath(imagePath), IMREAD_GRAYSCALE); if (img.empty()) FAIL() << "Can't load source image: " << getDataPath(imagePath); vector faces; equalizeHist(img, img); declare.in(img).time(60); UMat uimg = img.getUMat(ACCESS_READ); while(next()) { faces.clear(); cvtest::ocl::perf::safeFinish(); startTimer(); cc.detectMultiScale(uimg, faces, 1.1, 3, 0, minSize); stopTimer(); } sort(faces.begin(), faces.end(), comparators::RectLess()); SANITY_CHECK(faces, min_size/5); } #endif //HAVE_OPENCL