/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" using namespace cv; class CV_KalmanTest : public cvtest::BaseTest { public: CV_KalmanTest(); protected: void run(int); }; CV_KalmanTest::CV_KalmanTest() { } void CV_KalmanTest::run( int ) { int code = cvtest::TS::OK; const int Dim = 7; const int Steps = 100; const double max_init = 1; const double max_noise = 0.1; const double EPSILON = 1.000; RNG& rng = ts->get_rng(); CvKalman* Kalm; int i, j; CvMat* Sample = cvCreateMat(Dim,1,CV_32F); CvMat* Temp = cvCreateMat(Dim,1,CV_32F); Kalm = cvCreateKalman(Dim, Dim); CvMat Dyn = cvMat(Dim,Dim,CV_32F,Kalm->DynamMatr); CvMat Mes = cvMat(Dim,Dim,CV_32F,Kalm->MeasurementMatr); CvMat PNC = cvMat(Dim,Dim,CV_32F,Kalm->PNCovariance); CvMat MNC = cvMat(Dim,Dim,CV_32F,Kalm->MNCovariance); CvMat PriErr = cvMat(Dim,Dim,CV_32F,Kalm->PriorErrorCovariance); CvMat PostErr = cvMat(Dim,Dim,CV_32F,Kalm->PosterErrorCovariance); CvMat PriState = cvMat(Dim,1,CV_32F,Kalm->PriorState); CvMat PostState = cvMat(Dim,1,CV_32F,Kalm->PosterState); cvSetIdentity(&PNC); cvSetIdentity(&PriErr); cvSetIdentity(&PostErr); cvSetZero(&MNC); cvSetZero(&PriState); cvSetZero(&PostState); cvSetIdentity(&Mes); cvSetIdentity(&Dyn); Mat _Sample = cvarrToMat(Sample); cvtest::randUni(rng, _Sample, cvScalarAll(-max_init), cvScalarAll(max_init)); cvKalmanCorrect(Kalm, Sample); for(i = 0; idata.fl[k]; } Temp->data.fl[j]= (float)(t+(cvtest::randReal(rng)*2-1)*max_noise); } cvCopy( Temp, Sample ); cvKalmanCorrect(Kalm,Temp); } Mat _state_post = cvarrToMat(Kalm->state_post); code = cvtest::cmpEps2( ts, _Sample, _state_post, EPSILON, false, "The final estimated state" ); cvReleaseMat(&Sample); cvReleaseMat(&Temp); cvReleaseKalman(&Kalm); if( code < 0 ) ts->set_failed_test_info( code ); } TEST(Video_Kalman, accuracy) { CV_KalmanTest test; test.safe_run(); } /* End of file. */