// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "precomp.hpp" #include "opencl_kernels_core.hpp" #include "stat.hpp" #include "sum.simd.hpp" #include "sum.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content #undef HAVE_IPP #undef CV_IPP_RUN_FAST #define CV_IPP_RUN_FAST(f, ...) #undef CV_IPP_RUN #define CV_IPP_RUN(c, f, ...) namespace cv { SumFunc getSumFunc(int depth) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(getSumFunc, (depth), CV_CPU_DISPATCH_MODES_ALL); } #ifdef HAVE_OPENCL bool ocl_sum( InputArray _src, Scalar & res, int sum_op, InputArray _mask, InputArray _src2, bool calc2, const Scalar & res2 ) { CV_Assert(sum_op == OCL_OP_SUM || sum_op == OCL_OP_SUM_ABS || sum_op == OCL_OP_SUM_SQR); const ocl::Device & dev = ocl::Device::getDefault(); bool doubleSupport = dev.doubleFPConfig() > 0, haveMask = _mask.kind() != _InputArray::NONE, haveSrc2 = _src2.kind() != _InputArray::NONE; int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), kercn = cn == 1 && !haveMask ? ocl::predictOptimalVectorWidth(_src, _src2) : 1, mcn = std::max(cn, kercn); CV_Assert(!haveSrc2 || _src2.type() == type); int convert_cn = haveSrc2 ? mcn : cn; if ( (!doubleSupport && depth == CV_64F) || cn > 4 ) return false; int ngroups = dev.maxComputeUnits(), dbsize = ngroups * (calc2 ? 2 : 1); size_t wgs = dev.maxWorkGroupSize(); int ddepth = std::max(sum_op == OCL_OP_SUM_SQR ? CV_32F : CV_32S, depth), dtype = CV_MAKE_TYPE(ddepth, cn); CV_Assert(!haveMask || _mask.type() == CV_8UC1); int wgs2_aligned = 1; while (wgs2_aligned < (int)wgs) wgs2_aligned <<= 1; wgs2_aligned >>= 1; static const char * const opMap[3] = { "OP_SUM", "OP_SUM_ABS", "OP_SUM_SQR" }; char cvt[2][40]; String opts = format("-D srcT=%s -D srcT1=%s -D dstT=%s -D dstTK=%s -D dstT1=%s -D ddepth=%d -D cn=%d" " -D convertToDT=%s -D %s -D WGS=%d -D WGS2_ALIGNED=%d%s%s%s%s -D kercn=%d%s%s%s -D convertFromU=%s", ocl::typeToStr(CV_MAKE_TYPE(depth, mcn)), ocl::typeToStr(depth), ocl::typeToStr(dtype), ocl::typeToStr(CV_MAKE_TYPE(ddepth, mcn)), ocl::typeToStr(ddepth), ddepth, cn, ocl::convertTypeStr(depth, ddepth, mcn, cvt[0]), opMap[sum_op], (int)wgs, wgs2_aligned, doubleSupport ? " -D DOUBLE_SUPPORT" : "", haveMask ? " -D HAVE_MASK" : "", _src.isContinuous() ? " -D HAVE_SRC_CONT" : "", haveMask && _mask.isContinuous() ? " -D HAVE_MASK_CONT" : "", kercn, haveSrc2 ? " -D HAVE_SRC2" : "", calc2 ? " -D OP_CALC2" : "", haveSrc2 && _src2.isContinuous() ? " -D HAVE_SRC2_CONT" : "", depth <= CV_32S && ddepth == CV_32S ? ocl::convertTypeStr(CV_8U, ddepth, convert_cn, cvt[1]) : "noconvert"); ocl::Kernel k("reduce", ocl::core::reduce_oclsrc, opts); if (k.empty()) return false; UMat src = _src.getUMat(), src2 = _src2.getUMat(), db(1, dbsize, dtype), mask = _mask.getUMat(); ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src), dbarg = ocl::KernelArg::PtrWriteOnly(db), maskarg = ocl::KernelArg::ReadOnlyNoSize(mask), src2arg = ocl::KernelArg::ReadOnlyNoSize(src2); if (haveMask) { if (haveSrc2) k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, maskarg, src2arg); else k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, maskarg); } else { if (haveSrc2) k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, src2arg); else k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg); } size_t globalsize = ngroups * wgs; if (k.run(1, &globalsize, &wgs, false)) { typedef Scalar (*part_sum)(Mat m); part_sum funcs[3] = { ocl_part_sum, ocl_part_sum, ocl_part_sum }, func = funcs[ddepth - CV_32S]; Mat mres = db.getMat(ACCESS_READ); if (calc2) const_cast(res2) = func(mres.colRange(ngroups, dbsize)); res = func(mres.colRange(0, ngroups)); return true; } return false; } #endif #ifdef HAVE_IPP static bool ipp_sum(Mat &src, Scalar &_res) { CV_INSTRUMENT_REGION_IPP(); #if IPP_VERSION_X100 >= 700 int cn = src.channels(); if (cn > 4) return false; size_t total_size = src.total(); int rows = src.size[0], cols = rows ? (int)(total_size/rows) : 0; if( src.dims == 2 || (src.isContinuous() && cols > 0 && (size_t)rows*cols == total_size) ) { IppiSize sz = { cols, rows }; int type = src.type(); typedef IppStatus (CV_STDCALL* ippiSumFuncHint)(const void*, int, IppiSize, double *, IppHintAlgorithm); typedef IppStatus (CV_STDCALL* ippiSumFuncNoHint)(const void*, int, IppiSize, double *); ippiSumFuncHint ippiSumHint = type == CV_32FC1 ? (ippiSumFuncHint)ippiSum_32f_C1R : type == CV_32FC3 ? (ippiSumFuncHint)ippiSum_32f_C3R : type == CV_32FC4 ? (ippiSumFuncHint)ippiSum_32f_C4R : 0; ippiSumFuncNoHint ippiSum = type == CV_8UC1 ? (ippiSumFuncNoHint)ippiSum_8u_C1R : type == CV_8UC3 ? (ippiSumFuncNoHint)ippiSum_8u_C3R : type == CV_8UC4 ? (ippiSumFuncNoHint)ippiSum_8u_C4R : type == CV_16UC1 ? (ippiSumFuncNoHint)ippiSum_16u_C1R : type == CV_16UC3 ? (ippiSumFuncNoHint)ippiSum_16u_C3R : type == CV_16UC4 ? (ippiSumFuncNoHint)ippiSum_16u_C4R : type == CV_16SC1 ? (ippiSumFuncNoHint)ippiSum_16s_C1R : type == CV_16SC3 ? (ippiSumFuncNoHint)ippiSum_16s_C3R : type == CV_16SC4 ? (ippiSumFuncNoHint)ippiSum_16s_C4R : 0; CV_Assert(!ippiSumHint || !ippiSum); if( ippiSumHint || ippiSum ) { Ipp64f res[4]; IppStatus ret = ippiSumHint ? CV_INSTRUMENT_FUN_IPP(ippiSumHint, src.ptr(), (int)src.step[0], sz, res, ippAlgHintAccurate) : CV_INSTRUMENT_FUN_IPP(ippiSum, src.ptr(), (int)src.step[0], sz, res); if( ret >= 0 ) { for( int i = 0; i < cn; i++ ) _res[i] = res[i]; return true; } } } #else CV_UNUSED(src); CV_UNUSED(_res); #endif return false; } #endif Scalar sum(InputArray _src) { CV_INSTRUMENT_REGION(); #if defined HAVE_OPENCL || defined HAVE_IPP Scalar _res; #endif #ifdef HAVE_OPENCL CV_OCL_RUN_(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2, ocl_sum(_src, _res, OCL_OP_SUM), _res) #endif Mat src = _src.getMat(); CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_sum(src, _res), _res); int k, cn = src.channels(), depth = src.depth(); SumFunc func = getSumFunc(depth); CV_Assert( cn <= 4 && func != 0 ); const Mat* arrays[] = {&src, 0}; uchar* ptrs[1] = {}; NAryMatIterator it(arrays, ptrs); Scalar s; int total = (int)it.size, blockSize = total, intSumBlockSize = 0; int j, count = 0; AutoBuffer _buf; int* buf = (int*)&s[0]; size_t esz = 0; bool blockSum = depth < CV_32S; if( blockSum ) { intSumBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15); blockSize = std::min(blockSize, intSumBlockSize); _buf.allocate(cn); buf = _buf.data(); for( k = 0; k < cn; k++ ) buf[k] = 0; esz = src.elemSize(); } for( size_t i = 0; i < it.nplanes; i++, ++it ) { for( j = 0; j < total; j += blockSize ) { int bsz = std::min(total - j, blockSize); func( ptrs[0], 0, (uchar*)buf, bsz, cn ); count += bsz; if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) { for( k = 0; k < cn; k++ ) { s[k] += buf[k]; buf[k] = 0; } count = 0; } ptrs[0] += bsz*esz; } } return s; } } // namespace