/* // Sample demonstrating interoperability of OpenCV UMat with Direct X surface // At first, the data obtained from video file or camera and // placed onto Direct X surface, // following mapping of this Direct X surface to OpenCV UMat and call cv::Blur // function. The result is mapped back to Direct X surface and rendered through // Direct X API. */ #define WIN32_LEAN_AND_MEAN #include #include #include "opencv2/core.hpp" #include "opencv2/core/directx.hpp" #include "opencv2/core/ocl.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/videoio.hpp" #include "d3dsample.hpp" #pragma comment (lib, "d3d11.lib") using namespace std; using namespace cv; class D3D11WinApp : public D3DSample { public: D3D11WinApp(int width, int height, std::string& window_name, cv::VideoCapture& cap) : D3DSample(width, height, window_name, cap), m_nv12_available(false) {} ~D3D11WinApp() {} int create(void) { // base initialization D3DSample::create(); // initialize DirectX HRESULT r; DXGI_SWAP_CHAIN_DESC scd; ZeroMemory(&scd, sizeof(DXGI_SWAP_CHAIN_DESC)); scd.BufferCount = 1; // one back buffer scd.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM; // use 32-bit color scd.BufferDesc.Width = m_width; // set the back buffer width scd.BufferDesc.Height = m_height; // set the back buffer height scd.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; // how swap chain is to be used scd.OutputWindow = m_hWnd; // the window to be used scd.SampleDesc.Count = 1; // how many multisamples scd.Windowed = TRUE; // windowed/full-screen mode scd.SwapEffect = DXGI_SWAP_EFFECT_DISCARD; scd.Flags = DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_SWITCH; // allow full-screen switching r = ::D3D11CreateDeviceAndSwapChain( NULL, D3D_DRIVER_TYPE_HARDWARE, NULL, 0, NULL, 0, D3D11_SDK_VERSION, &scd, &m_pD3D11SwapChain, &m_pD3D11Dev, NULL, &m_pD3D11Ctx); if (FAILED(r)) { throw std::runtime_error("D3D11CreateDeviceAndSwapChain() failed!"); } #if defined(_WIN32_WINNT_WIN8) && _WIN32_WINNT >= _WIN32_WINNT_WIN8 UINT fmt = 0; r = m_pD3D11Dev->CheckFormatSupport(DXGI_FORMAT_NV12, &fmt); if (SUCCEEDED(r)) { m_nv12_available = true; } #endif r = m_pD3D11SwapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (LPVOID*)&m_pBackBuffer); if (FAILED(r)) { throw std::runtime_error("GetBufer() failed!"); } r = m_pD3D11Dev->CreateRenderTargetView(m_pBackBuffer, NULL, &m_pRenderTarget); if (FAILED(r)) { throw std::runtime_error("CreateRenderTargetView() failed!"); } m_pD3D11Ctx->OMSetRenderTargets(1, &m_pRenderTarget, NULL); D3D11_VIEWPORT viewport; ZeroMemory(&viewport, sizeof(D3D11_VIEWPORT)); viewport.Width = (float)m_width; viewport.Height = (float)m_height; viewport.MinDepth = 0.0f; viewport.MaxDepth = 0.0f; m_pD3D11Ctx->RSSetViewports(1, &viewport); m_pSurfaceRGBA = 0; m_pSurfaceNV12 = 0; m_pSurfaceNV12_cpu_copy = 0; D3D11_TEXTURE2D_DESC desc_rgba; desc_rgba.Width = m_width; desc_rgba.Height = m_height; desc_rgba.MipLevels = 1; desc_rgba.ArraySize = 1; desc_rgba.Format = DXGI_FORMAT_R8G8B8A8_UNORM; desc_rgba.SampleDesc.Count = 1; desc_rgba.SampleDesc.Quality = 0; desc_rgba.BindFlags = D3D11_BIND_SHADER_RESOURCE; desc_rgba.Usage = D3D11_USAGE_DYNAMIC; desc_rgba.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; desc_rgba.MiscFlags = 0; r = m_pD3D11Dev->CreateTexture2D(&desc_rgba, 0, &m_pSurfaceRGBA); if (FAILED(r)) { throw std::runtime_error("Can't create DX texture"); } #if defined(_WIN32_WINNT_WIN8) && _WIN32_WINNT >= _WIN32_WINNT_WIN8 if(m_nv12_available) { D3D11_TEXTURE2D_DESC desc_nv12; desc_nv12.Width = m_width; desc_nv12.Height = m_height; desc_nv12.MipLevels = 1; desc_nv12.ArraySize = 1; desc_nv12.Format = DXGI_FORMAT_NV12; desc_nv12.SampleDesc.Count = 1; desc_nv12.SampleDesc.Quality = 0; desc_nv12.BindFlags = D3D11_BIND_SHADER_RESOURCE; desc_nv12.Usage = D3D11_USAGE_DEFAULT; desc_nv12.CPUAccessFlags = 0; desc_nv12.MiscFlags = D3D11_RESOURCE_MISC_SHARED; r = m_pD3D11Dev->CreateTexture2D(&desc_nv12, 0, &m_pSurfaceNV12); if (FAILED(r)) { throw std::runtime_error("Can't create DX NV12 texture"); } D3D11_TEXTURE2D_DESC desc_nv12_cpu_copy; desc_nv12_cpu_copy.Width = m_width; desc_nv12_cpu_copy.Height = m_height; desc_nv12_cpu_copy.MipLevels = 1; desc_nv12_cpu_copy.ArraySize = 1; desc_nv12_cpu_copy.Format = DXGI_FORMAT_NV12; desc_nv12_cpu_copy.SampleDesc.Count = 1; desc_nv12_cpu_copy.SampleDesc.Quality = 0; desc_nv12_cpu_copy.BindFlags = 0; desc_nv12_cpu_copy.Usage = D3D11_USAGE_STAGING; desc_nv12_cpu_copy.CPUAccessFlags = /*D3D11_CPU_ACCESS_WRITE | */D3D11_CPU_ACCESS_READ; desc_nv12_cpu_copy.MiscFlags = 0; r = m_pD3D11Dev->CreateTexture2D(&desc_nv12_cpu_copy, 0, &m_pSurfaceNV12_cpu_copy); if (FAILED(r)) { throw std::runtime_error("Can't create DX NV12 texture"); } } #endif // initialize OpenCL context of OpenCV lib from DirectX if (cv::ocl::haveOpenCL()) { m_oclCtx = cv::directx::ocl::initializeContextFromD3D11Device(m_pD3D11Dev); } m_oclDevName = cv::ocl::useOpenCL() ? cv::ocl::Context::getDefault().device(0).name() : "No OpenCL device"; return 0; } // create() // get media data on DX surface for further processing int get_surface(ID3D11Texture2D** ppSurface, bool use_nv12) { HRESULT r; if (!m_cap.read(m_frame_bgr)) return -1; if (use_nv12) { cv::cvtColor(m_frame_bgr, m_frame_i420, CV_BGR2YUV_I420); convert_I420_to_NV12(m_frame_i420, m_frame_nv12, m_width, m_height); m_pD3D11Ctx->UpdateSubresource(m_pSurfaceNV12, 0, 0, m_frame_nv12.data, (UINT)m_frame_nv12.step[0], (UINT)m_frame_nv12.total()); } else { cv::cvtColor(m_frame_bgr, m_frame_rgba, CV_BGR2RGBA); // process video frame on CPU UINT subResource = ::D3D11CalcSubresource(0, 0, 1); D3D11_MAPPED_SUBRESOURCE mappedTex; r = m_pD3D11Ctx->Map(m_pSurfaceRGBA, subResource, D3D11_MAP_WRITE_DISCARD, 0, &mappedTex); if (FAILED(r)) { throw std::runtime_error("surface mapping failed!"); } cv::Mat m(m_height, m_width, CV_8UC4, mappedTex.pData, mappedTex.RowPitch); m_frame_rgba.copyTo(m); m_pD3D11Ctx->Unmap(m_pSurfaceRGBA, subResource); } *ppSurface = use_nv12 ? m_pSurfaceNV12 : m_pSurfaceRGBA; return 0; } // get_surface() // process and render media data int render() { try { if (m_shutdown) return 0; // capture user input once MODE mode = (m_mode == MODE_GPU_NV12 && !m_nv12_available) ? MODE_GPU_RGBA : m_mode; HRESULT r; ID3D11Texture2D* pSurface = 0; r = get_surface(&pSurface, mode == MODE_GPU_NV12); if (FAILED(r)) { throw std::runtime_error("get_surface() failed!"); } m_timer.start(); switch (mode) { case MODE_CPU: { // process video frame on CPU UINT subResource = ::D3D11CalcSubresource(0, 0, 1); D3D11_MAPPED_SUBRESOURCE mappedTex; r = m_pD3D11Ctx->Map(pSurface, subResource, D3D11_MAP_WRITE_DISCARD, 0, &mappedTex); if (FAILED(r)) { throw std::runtime_error("surface mapping failed!"); } cv::Mat m(m_height, m_width, CV_8UC4, mappedTex.pData, (int)mappedTex.RowPitch); if (m_demo_processing) { // blur data from D3D11 surface with OpenCV on CPU cv::blur(m, m, cv::Size(15, 15), cv::Point(-7, -7)); } cv::String strMode = cv::format("mode: %s", m_modeStr[MODE_CPU].c_str()); cv::String strProcessing = m_demo_processing ? "blur frame" : "copy frame"; cv::String strTime = cv::format("time: %4.1f msec", m_timer.time(Timer::UNITS::MSEC)); cv::String strDevName = cv::format("OpenCL device: %s", m_oclDevName.c_str()); cv::putText(m, strMode, cv::Point(0, 16), 1, 0.8, cv::Scalar(0, 0, 0)); cv::putText(m, strProcessing, cv::Point(0, 32), 1, 0.8, cv::Scalar(0, 0, 0)); cv::putText(m, strTime, cv::Point(0, 48), 1, 0.8, cv::Scalar(0, 0, 0)); cv::putText(m, strDevName, cv::Point(0, 64), 1, 0.8, cv::Scalar(0, 0, 0)); m_pD3D11Ctx->Unmap(pSurface, subResource); break; } case MODE_GPU_RGBA: case MODE_GPU_NV12: { // process video frame on GPU cv::UMat u; cv::directx::convertFromD3D11Texture2D(pSurface, u); if (m_demo_processing) { // blur data from D3D11 surface with OpenCV on GPU with OpenCL cv::blur(u, u, cv::Size(15, 15), cv::Point(-7, -7)); } cv::String strMode = cv::format("mode: %s", m_modeStr[mode].c_str()); cv::String strProcessing = m_demo_processing ? "blur frame" : "copy frame"; cv::String strTime = cv::format("time: %4.1f msec", m_timer.time(Timer::UNITS::MSEC)); cv::String strDevName = cv::format("OpenCL device: %s", m_oclDevName.c_str()); cv::putText(u, strMode, cv::Point(0, 16), 1, 0.8, cv::Scalar(0, 0, 0)); cv::putText(u, strProcessing, cv::Point(0, 32), 1, 0.8, cv::Scalar(0, 0, 0)); cv::putText(u, strTime, cv::Point(0, 48), 1, 0.8, cv::Scalar(0, 0, 0)); cv::putText(u, strDevName, cv::Point(0, 64), 1, 0.8, cv::Scalar(0, 0, 0)); cv::directx::convertToD3D11Texture2D(u, pSurface); if (mode == MODE_GPU_NV12) { // just for rendering, we need to convert NV12 to RGBA. m_pD3D11Ctx->CopyResource(m_pSurfaceNV12_cpu_copy, m_pSurfaceNV12); // process video frame on CPU { UINT subResource = ::D3D11CalcSubresource(0, 0, 1); D3D11_MAPPED_SUBRESOURCE mappedTex; r = m_pD3D11Ctx->Map(m_pSurfaceNV12_cpu_copy, subResource, D3D11_MAP_READ, 0, &mappedTex); if (FAILED(r)) { throw std::runtime_error("surface mapping failed!"); } cv::Mat frame_nv12(m_height + (m_height / 2), m_width, CV_8UC1, mappedTex.pData, mappedTex.RowPitch); cv::cvtColor(frame_nv12, m_frame_rgba, CV_YUV2RGBA_NV12); m_pD3D11Ctx->Unmap(m_pSurfaceNV12_cpu_copy, subResource); } { UINT subResource = ::D3D11CalcSubresource(0, 0, 1); D3D11_MAPPED_SUBRESOURCE mappedTex; r = m_pD3D11Ctx->Map(m_pSurfaceRGBA, subResource, D3D11_MAP_WRITE_DISCARD, 0, &mappedTex); if (FAILED(r)) { throw std::runtime_error("surface mapping failed!"); } cv::Mat m(m_height, m_width, CV_8UC4, mappedTex.pData, mappedTex.RowPitch); m_frame_rgba.copyTo(m); m_pD3D11Ctx->Unmap(m_pSurfaceRGBA, subResource); } pSurface = m_pSurfaceRGBA; } break; } } // switch m_timer.stop(); // traditional DX render pipeline: // BitBlt surface to backBuffer and flip backBuffer to frontBuffer m_pD3D11Ctx->CopyResource(m_pBackBuffer, pSurface); // present the back buffer contents to the display // switch the back buffer and the front buffer r = m_pD3D11SwapChain->Present(0, 0); if (FAILED(r)) { throw std::runtime_error("switch betweem fronat and back buffers failed!"); } } // try catch (cv::Exception& e) { std::cerr << "Exception: " << e.what() << std::endl; cleanup(); return 10; } catch (const std::exception& e) { std::cerr << "Exception: " << e.what() << std::endl; cleanup(); return 11; } return 0; } // render() int cleanup(void) { SAFE_RELEASE(m_pSurfaceRGBA); SAFE_RELEASE(m_pSurfaceNV12); SAFE_RELEASE(m_pSurfaceNV12_cpu_copy); SAFE_RELEASE(m_pBackBuffer); SAFE_RELEASE(m_pD3D11SwapChain); SAFE_RELEASE(m_pRenderTarget); SAFE_RELEASE(m_pD3D11Dev); SAFE_RELEASE(m_pD3D11Ctx); D3DSample::cleanup(); return 0; } // cleanup() protected: void convert_I420_to_NV12(cv::Mat& i420, cv::Mat& nv12, int width, int height) { nv12.create(i420.rows, i420.cols, CV_8UC1); unsigned char* pSrcY = i420.data; unsigned char* pDstY = nv12.data; size_t srcStep = i420.step[0]; size_t dstStep = nv12.step[0]; { unsigned char* src; unsigned char* dst; // copy Y plane for (int i = 0; i < height; i++) { src = pSrcY + i*srcStep; dst = pDstY + i*dstStep; for (int j = 0; j < width; j++) { dst[j] = src[j]; } } } { // copy U/V planes to UV plane unsigned char* pSrcU; unsigned char* pSrcV; unsigned char* pDstUV; size_t uv_offset = height * dstStep; for (int i = 0; i < height / 2; i++) { pSrcU = pSrcY + height*width + i*(width / 2); pSrcV = pSrcY + height*width + (height / 2) * (width / 2) + i*(width / 2); pDstUV = pDstY + uv_offset + i*dstStep; for (int j = 0; j < width / 2; j++) { pDstUV[j*2 + 0] = pSrcU[j]; pDstUV[j*2 + 1] = pSrcV[j]; } } } return; } private: ID3D11Device* m_pD3D11Dev; IDXGISwapChain* m_pD3D11SwapChain; ID3D11DeviceContext* m_pD3D11Ctx; ID3D11Texture2D* m_pBackBuffer; ID3D11Texture2D* m_pSurfaceRGBA; ID3D11Texture2D* m_pSurfaceNV12; ID3D11Texture2D* m_pSurfaceNV12_cpu_copy; ID3D11RenderTargetView* m_pRenderTarget; cv::ocl::Context m_oclCtx; cv::String m_oclPlatformName; cv::String m_oclDevName; bool m_nv12_available; cv::Mat m_frame_i420; cv::Mat m_frame_nv12; }; // main func int main(int argc, char** argv) { std::string title = "D3D11 interop sample"; return d3d_app(argc, argv, title); }