/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2014-2015, Itseez Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /* //////////////////////////////////////////////////////////////////// // // Geometrical transforms on images and matrices: rotation, zoom etc. // // */ #include "precomp.hpp" #include "resize.hpp" namespace cv { namespace opt_AVX2 { class resizeNNInvokerAVX4 CV_FINAL : public ParallelLoopBody { public: resizeNNInvokerAVX4(const Mat& _src, Mat &_dst, int *_x_ofs, int _pix_size4, double _ify) : ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), pix_size4(_pix_size4), ify(_ify) { } #if defined(__INTEL_COMPILER) #pragma optimization_parameter target_arch=AVX #endif virtual void operator() (const Range& range) const CV_OVERRIDE { Size ssize = src.size(), dsize = dst.size(); int y, x; int width = dsize.width; int avxWidth = width - (width & 0x7); const __m256i CV_DECL_ALIGNED(64) mask = _mm256_set1_epi32(-1); if(((int64)(dst.data + dst.step) & 0x1f) == 0) { for(y = range.start; y < range.end; y++) { uchar* D = dst.data + dst.step*y; uchar* Dstart = D; int sy = std::min(cvFloor(y*ify), ssize.height-1); const uchar* S = src.data + sy*src.step; #ifdef CV_ICC #pragma unroll(4) #endif for(x = 0; x < avxWidth; x += 8) { const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x); __m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr); __m256i CV_DECL_ALIGNED(64) pixels = _mm256_i32gather_epi32((const int*)S, indices, 1); _mm256_maskstore_epi32((int*)D, mask, pixels); D += 32; } for(; x < width; x++) { *(int*)(Dstart + x*4) = *(int*)(S + x_ofs[x]); } } } else { for(y = range.start; y < range.end; y++) { uchar* D = dst.data + dst.step*y; uchar* Dstart = D; int sy = std::min(cvFloor(y*ify), ssize.height-1); const uchar* S = src.data + sy*src.step; #ifdef CV_ICC #pragma unroll(4) #endif for(x = 0; x < avxWidth; x += 8) { const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x); __m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr); __m256i CV_DECL_ALIGNED(64) pixels = _mm256_i32gather_epi32((const int*)S, indices, 1); _mm256_storeu_si256((__m256i*)D, pixels); D += 32; } for(; x < width; x++) { *(int*)(Dstart + x*4) = *(int*)(S + x_ofs[x]); } } } _mm256_zeroupper(); } private: const Mat src; Mat dst; int* x_ofs, pix_size4; double ify; resizeNNInvokerAVX4(const resizeNNInvokerAVX4&); resizeNNInvokerAVX4& operator=(const resizeNNInvokerAVX4&); }; class resizeNNInvokerAVX2 CV_FINAL : public ParallelLoopBody { public: resizeNNInvokerAVX2(const Mat& _src, Mat &_dst, int *_x_ofs, int _pix_size4, double _ify) : ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), pix_size4(_pix_size4), ify(_ify) { } #if defined(__INTEL_COMPILER) #pragma optimization_parameter target_arch=AVX #endif virtual void operator() (const Range& range) const CV_OVERRIDE { Size ssize = src.size(), dsize = dst.size(); int y, x; int width = dsize.width; //int avxWidth = (width - 1) - ((width - 1) & 0x7); int avxWidth = width - (width & 0xf); const __m256i CV_DECL_ALIGNED(64) mask = _mm256_set1_epi32(-1); const __m256i CV_DECL_ALIGNED(64) shuffle_mask = _mm256_set_epi8(15,14,11,10,13,12,9,8,7,6,3,2,5,4,1,0, 15,14,11,10,13,12,9,8,7,6,3,2,5,4,1,0); const __m256i CV_DECL_ALIGNED(64) permute_mask = _mm256_set_epi32(7, 5, 3, 1, 6, 4, 2, 0); //const __m256i CV_DECL_ALIGNED(64) shift_shuffle_mask = _mm256_set_epi8(13,12,15,14,9,8,11,10,5,4,7,6,1,0,3,2, // 13,12,15,14,9,8,11,10,5,4,7,6,1,0,3,2); if(((int64)(dst.data + dst.step) & 0x1f) == 0) { for(y = range.start; y < range.end; y++) { uchar* D = dst.data + dst.step*y; uchar* Dstart = D; int sy = std::min(cvFloor(y*ify), ssize.height-1); const uchar* S = src.data + sy*src.step; const uchar* S2 = S - 2; #ifdef CV_ICC #pragma unroll(4) #endif for(x = 0; x < avxWidth; x += 16) { const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x); __m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr); __m256i CV_DECL_ALIGNED(64) pixels1 = _mm256_i32gather_epi32((const int*)S, indices, 1); const __m256i CV_DECL_ALIGNED(64) *addr2 = (__m256i*)(x_ofs + x + 8); __m256i CV_DECL_ALIGNED(64) indices2 = _mm256_lddqu_si256(addr2); __m256i CV_DECL_ALIGNED(64) pixels2 = _mm256_i32gather_epi32((const int*)S2, indices2, 1); __m256i CV_DECL_ALIGNED(64) unpacked = _mm256_blend_epi16(pixels1, pixels2, 0xaa); __m256i CV_DECL_ALIGNED(64) bytes_shuffled = _mm256_shuffle_epi8(unpacked, shuffle_mask); __m256i CV_DECL_ALIGNED(64) ints_permuted = _mm256_permutevar8x32_epi32(bytes_shuffled, permute_mask); _mm256_maskstore_epi32((int*)D, mask, ints_permuted); D += 32; } for(; x < width; x++) { *(ushort*)(Dstart + x*2) = *(ushort*)(S + x_ofs[x]); } } } else { for(y = range.start; y < range.end; y++) { uchar* D = dst.data + dst.step*y; uchar* Dstart = D; int sy = std::min(cvFloor(y*ify), ssize.height-1); const uchar* S = src.data + sy*src.step; const uchar* S2 = S - 2; #ifdef CV_ICC #pragma unroll(4) #endif for(x = 0; x < avxWidth; x += 16) { const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x); __m256i CV_DECL_ALIGNED(64) indices = _mm256_lddqu_si256(addr); __m256i CV_DECL_ALIGNED(64) pixels1 = _mm256_i32gather_epi32((const int*)S, indices, 1); const __m256i CV_DECL_ALIGNED(64) *addr2 = (__m256i*)(x_ofs + x + 8); __m256i CV_DECL_ALIGNED(64) indices2 = _mm256_lddqu_si256(addr2); __m256i CV_DECL_ALIGNED(64) pixels2 = _mm256_i32gather_epi32((const int*)S2, indices2, 1); __m256i CV_DECL_ALIGNED(64) unpacked = _mm256_blend_epi16(pixels1, pixels2, 0xaa); __m256i CV_DECL_ALIGNED(64) bytes_shuffled = _mm256_shuffle_epi8(unpacked, shuffle_mask); __m256i CV_DECL_ALIGNED(64) ints_permuted = _mm256_permutevar8x32_epi32(bytes_shuffled, permute_mask); _mm256_storeu_si256((__m256i*)D, ints_permuted); D += 32; } for(; x < width; x++) { *(ushort*)(Dstart + x*2) = *(ushort*)(S + x_ofs[x]); } } } _mm256_zeroupper(); } private: const Mat src; Mat dst; int* x_ofs, pix_size4; double ify; resizeNNInvokerAVX2(const resizeNNInvokerAVX2&); resizeNNInvokerAVX2& operator=(const resizeNNInvokerAVX2&); }; void resizeNN2_AVX2(const Range& range, const Mat& src, Mat &dst, int *x_ofs, int pix_size4, double ify) { resizeNNInvokerAVX2 invoker(src, dst, x_ofs, pix_size4, ify); parallel_for_(range, invoker, dst.total() / (double)(1 << 16)); } void resizeNN4_AVX2(const Range& range, const Mat& src, Mat &dst, int *x_ofs, int pix_size4, double ify) { resizeNNInvokerAVX4 invoker(src, dst, x_ofs, pix_size4, ify); parallel_for_(range, invoker, dst.total() / (double)(1 << 16)); } } } /* End of file. */