// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2020 Intel Corporation #include "../test_precomp.hpp" #ifdef HAVE_ONNX #include #include // wstring_convert #include #include #include #include #include namespace { class TestMediaBGR final: public cv::MediaFrame::IAdapter { cv::Mat m_mat; using Cb = cv::MediaFrame::View::Callback; Cb m_cb; public: explicit TestMediaBGR(cv::Mat m, Cb cb = [](){}) : m_mat(m), m_cb(cb) { } cv::GFrameDesc meta() const override { return cv::GFrameDesc{cv::MediaFormat::BGR, cv::Size(m_mat.cols, m_mat.rows)}; } cv::MediaFrame::View access(cv::MediaFrame::Access) override { cv::MediaFrame::View::Ptrs pp = { m_mat.ptr(), nullptr, nullptr, nullptr }; cv::MediaFrame::View::Strides ss = { m_mat.step, 0u, 0u, 0u }; return cv::MediaFrame::View(std::move(pp), std::move(ss), Cb{m_cb}); } }; class TestMediaNV12 final: public cv::MediaFrame::IAdapter { cv::Mat m_y; cv::Mat m_uv; public: TestMediaNV12(cv::Mat y, cv::Mat uv) : m_y(y), m_uv(uv) { } cv::GFrameDesc meta() const override { return cv::GFrameDesc{cv::MediaFormat::NV12, cv::Size(m_y.cols, m_y.rows)}; } cv::MediaFrame::View access(cv::MediaFrame::Access) override { cv::MediaFrame::View::Ptrs pp = { m_y.ptr(), m_uv.ptr(), nullptr, nullptr }; cv::MediaFrame::View::Strides ss = { m_y.step, m_uv.step, 0u, 0u }; return cv::MediaFrame::View(std::move(pp), std::move(ss)); } }; struct ONNXInitPath { ONNXInitPath() { const char* env_path = getenv("OPENCV_GAPI_ONNX_MODEL_PATH"); if (env_path) { cvtest::addDataSearchPath(env_path); } } }; static ONNXInitPath g_init_path; cv::Mat initMatrixRandU(const int type, const cv::Size& sz_in) { const cv::Mat in_mat = cv::Mat(sz_in, type); if (CV_MAT_DEPTH(type) < CV_32F) { cv::randu(in_mat, cv::Scalar::all(0), cv::Scalar::all(255)); } else { const int fscale = 256; // avoid bits near ULP, generate stable test input cv::Mat in_mat32s(in_mat.size(), CV_MAKE_TYPE(CV_32S, CV_MAT_CN(type))); cv::randu(in_mat32s, cv::Scalar::all(0), cv::Scalar::all(255 * fscale)); in_mat32s.convertTo(in_mat, type, 1.0f / fscale, 0); } return in_mat; } } // anonymous namespace namespace opencv_test { namespace { // FIXME: taken from the DNN module void normAssert(cv::InputArray& ref, cv::InputArray& test, const char *comment /*= ""*/, const double l1 = 0.00001, const double lInf = 0.0001) { const double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total(); EXPECT_LE(normL1, l1) << comment; const double normInf = cvtest::norm(ref, test, cv::NORM_INF); EXPECT_LE(normInf, lInf) << comment; } inline std::string findModel(const std::string &model_name) { return findDataFile("vision/" + model_name + ".onnx", false); } inline void toCHW(const cv::Mat& src, cv::Mat& dst) { dst.create(cv::Size(src.cols, src.rows * src.channels()), CV_32F); std::vector planes; for (int i = 0; i < src.channels(); ++i) { planes.push_back(dst.rowRange(i * src.rows, (i + 1) * src.rows)); } cv::split(src, planes); } inline int toCV(ONNXTensorElementDataType prec) { switch (prec) { case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8: return CV_8U; case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT: return CV_32F; case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32: return CV_32S; case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64: return CV_32S; default: GAPI_Error("Unsupported data type"); } return -1; } void copyFromONNX(Ort::Value &v, cv::Mat& mat) { const auto info = v.GetTensorTypeAndShapeInfo(); const auto prec = info.GetElementType(); const auto shape = info.GetShape(); const std::vector dims(shape.begin(), shape.end()); mat.create(dims, toCV(prec)); switch (prec) { #define HANDLE(E,T) \ case E: std::copy_n(v.GetTensorMutableData(), \ mat.total(), \ reinterpret_cast(mat.data)); \ break; HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8, uint8_t); HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT, float); HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32, int); #undef HANDLE case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64: { const auto o_ptr = v.GetTensorMutableData(); const auto g_ptr = reinterpret_cast(mat.data); std::transform(o_ptr, o_ptr + mat.total(), g_ptr, [](int64_t el) { return static_cast(el); }); break; } default: GAPI_Error("ONNX. Unsupported data type"); } } inline std::vector toORT(const cv::MatSize &sz) { return cv::to_own(sz); } inline std::vector getCharNames(const std::vector& names) { std::vector out_ptrs; out_ptrs.reserve(names.size()); ade::util::transform(names, std::back_inserter(out_ptrs), [](const std::string& name) { return name.c_str(); }); return out_ptrs; } template void copyToOut(const cv::Mat& onnx_out, const T end_mark, cv::Mat& gapi_out) { // This function is part of some remap__ function. // You can set graph output size (gapi_out) larger than real out from ONNX // so you have to add something for separate correct data and garbage. // For example, end of data can be marked with -1 (for positive values) // or you can put size of correct data at first/last element of output matrix. const size_t size = std::min(onnx_out.total(), gapi_out.total()); std::copy(onnx_out.begin(), onnx_out.begin() + size, gapi_out.begin()); if (gapi_out.total() > onnx_out.total()) { T* gptr = gapi_out.ptr(); gptr[size] = end_mark; } } void remapYolo(const std::unordered_map &onnx, std::unordered_map &gapi) { GAPI_Assert(onnx.size() == 1u); GAPI_Assert(gapi.size() == 1u); // Result from Run method const cv::Mat& in = onnx.begin()->second; GAPI_Assert(in.depth() == CV_32F); // Configured output cv::Mat& out = gapi.begin()->second; // Simple copy copyToOut(in, -1.f, out); } void remapYoloV3(const std::unordered_map &onnx, std::unordered_map &gapi) { // Simple copy for outputs const cv::Mat& in_boxes = onnx.at("yolonms_layer_1/ExpandDims_1:0"); const cv::Mat& in_scores = onnx.at("yolonms_layer_1/ExpandDims_3:0"); const cv::Mat& in_indices = onnx.at("yolonms_layer_1/concat_2:0"); GAPI_Assert(in_boxes.depth() == CV_32F); GAPI_Assert(in_scores.depth() == CV_32F); GAPI_Assert(in_indices.depth() == CV_32S); cv::Mat& out_boxes = gapi.at("out1"); cv::Mat& out_scores = gapi.at("out2"); cv::Mat& out_indices = gapi.at("out3"); copyToOut(in_boxes, -1.f, out_boxes); copyToOut(in_scores, -1.f, out_scores); copyToOut(in_indices, -1, out_indices); } void remapToIESSDOut(const std::vector &detections, cv::Mat &ssd_output) { GAPI_Assert(detections.size() == 4u); for (const auto &det_el : detections) { GAPI_Assert(det_el.depth() == CV_32F); GAPI_Assert(!det_el.empty()); } // SSD-MobilenetV1 structure check ASSERT_EQ(1u, detections[0].total()); ASSERT_EQ(detections[2].total(), detections[0].total() * 100); ASSERT_EQ(detections[2].total(), detections[3].total()); ASSERT_EQ((detections[2].total() * 4), detections[1].total()); const int num_objects = static_cast(detections[0].ptr()[0]); GAPI_Assert(num_objects <= (ssd_output.size[2] - 1)); const float *in_boxes = detections[1].ptr(); const float *in_scores = detections[2].ptr(); const float *in_classes = detections[3].ptr(); float *ptr = ssd_output.ptr(); for (int i = 0; i < num_objects; ++i) { ptr[0] = 0.f; // "image_id" ptr[1] = in_classes[i]; // "label" ptr[2] = in_scores[i]; // "confidence" ptr[3] = in_boxes[4 * i + 1]; // left ptr[4] = in_boxes[4 * i + 0]; // top ptr[5] = in_boxes[4 * i + 3]; // right ptr[6] = in_boxes[4 * i + 2]; // bottom ptr += 7; in_boxes += 4; } if (num_objects < ssd_output.size[2] - 1) { // put a -1 mark at the end of output blob if there is space left ptr[0] = -1.f; } } void remapSSDPorts(const std::unordered_map &onnx, std::unordered_map &gapi) { // Assemble ONNX-processed outputs back to a single 1x1x200x7 blob // to preserve compatibility with OpenVINO-based SSD pipeline const cv::Mat &num_detections = onnx.at("num_detections:0"); const cv::Mat &detection_boxes = onnx.at("detection_boxes:0"); const cv::Mat &detection_scores = onnx.at("detection_scores:0"); const cv::Mat &detection_classes = onnx.at("detection_classes:0"); cv::Mat &ssd_output = gapi.at("detection_output"); remapToIESSDOut({num_detections, detection_boxes, detection_scores, detection_classes}, ssd_output); } void reallocSSDPort(const std::unordered_map &/*onnx*/, std::unordered_map &gapi) { gapi["detection_boxes"].create(1000, 3000, CV_32FC3); } void remapRCNNPortsC(const std::unordered_map &onnx, std::unordered_map &gapi) { // Simple copy for outputs const cv::Mat& in_boxes = onnx.at("6379"); const cv::Mat& in_labels = onnx.at("6381"); const cv::Mat& in_scores = onnx.at("6383"); GAPI_Assert(in_boxes.depth() == CV_32F); GAPI_Assert(in_labels.depth() == CV_32S); GAPI_Assert(in_scores.depth() == CV_32F); cv::Mat& out_boxes = gapi.at("out1"); cv::Mat& out_labels = gapi.at("out2"); cv::Mat& out_scores = gapi.at("out3"); copyToOut(in_boxes, -1.f, out_boxes); copyToOut(in_labels, -1, out_labels); copyToOut(in_scores, -1.f, out_scores); } void remapRCNNPortsDO(const std::unordered_map &onnx, std::unordered_map &gapi) { // Simple copy for outputs const cv::Mat& in_boxes = onnx.at("6379"); const cv::Mat& in_scores = onnx.at("6383"); GAPI_Assert(in_boxes.depth() == CV_32F); GAPI_Assert(in_scores.depth() == CV_32F); cv::Mat& out_boxes = gapi.at("out1"); cv::Mat& out_scores = gapi.at("out2"); copyToOut(in_boxes, -1.f, out_boxes); copyToOut(in_scores, -1.f, out_scores); } class ONNXtest : public ::testing::Test { public: std::string model_path; size_t num_in, num_out; std::vector out_gapi; std::vector out_onnx; cv::Mat in_mat; ONNXtest() { env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "test"); memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault); out_gapi.resize(1); } template void infer(const std::vector& ins, std::vector& outs, std::vector&& custom_out_names = {}) { // Prepare session #ifndef _WIN32 session = Ort::Session(env, model_path.c_str(), session_options); #else std::wstring_convert, wchar_t> converter; std::wstring w_model_path = converter.from_bytes(model_path.c_str()); session = Ort::Session(env, w_model_path.c_str(), session_options); #endif num_in = session.GetInputCount(); num_out = session.GetOutputCount(); GAPI_Assert(num_in == ins.size()); in_node_names.clear(); out_node_names.clear(); // Inputs Run params std::vector in_tensors; for(size_t i = 0; i < num_in; ++i) { char* in_node_name_p = session.GetInputName(i, allocator); in_node_names.emplace_back(in_node_name_p); allocator.Free(in_node_name_p); in_node_dims = toORT(ins[i].size); in_tensors.emplace_back(Ort::Value::CreateTensor(memory_info, const_cast(ins[i].ptr()), ins[i].total(), in_node_dims.data(), in_node_dims.size())); } // Outputs Run params if (custom_out_names.empty()) { for(size_t i = 0; i < num_out; ++i) { char* out_node_name_p = session.GetOutputName(i, allocator); out_node_names.emplace_back(out_node_name_p); allocator.Free(out_node_name_p); } } else { out_node_names = std::move(custom_out_names); } // Input/output order by names const auto in_run_names = getCharNames(in_node_names); const auto out_run_names = getCharNames(out_node_names); num_out = out_run_names.size(); // Run auto result = session.Run(Ort::RunOptions{nullptr}, in_run_names.data(), &in_tensors.front(), num_in, out_run_names.data(), num_out); // Copy outputs GAPI_Assert(result.size() == num_out); for (size_t i = 0; i < num_out; ++i) { const auto info = result[i].GetTensorTypeAndShapeInfo(); const auto shape = info.GetShape(); const auto type = toCV(info.GetElementType()); const std::vector dims(shape.begin(), shape.end()); outs.emplace_back(dims, type); copyFromONNX(result[i], outs.back()); } } // One input/output overload template void infer(const cv::Mat& in, cv::Mat& out) { std::vector result; infer(std::vector{in}, result); GAPI_Assert(result.size() == 1u); out = result.front(); } // One input overload template void infer(const cv::Mat& in, std::vector& outs, std::vector&& custom_out_names = {}) { infer(std::vector{in}, outs, std::move(custom_out_names)); } void validate() { GAPI_Assert(!out_gapi.empty() && !out_onnx.empty()); ASSERT_EQ(out_gapi.size(), out_onnx.size()); const auto size = out_gapi.size(); for (size_t i = 0; i < size; ++i) { normAssert(out_onnx[i], out_gapi[i], "Test outputs"); } } void useModel(const std::string& model_name) { model_path = findModel(model_name); } private: Ort::Env env{nullptr}; Ort::MemoryInfo memory_info{nullptr}; Ort::AllocatorWithDefaultOptions allocator; Ort::SessionOptions session_options; Ort::Session session{nullptr}; std::vector in_node_dims; std::vector in_node_names; std::vector out_node_names; }; class ONNXClassification : public ONNXtest { public: const cv::Scalar mean = { 0.485, 0.456, 0.406 }; const cv::Scalar std = { 0.229, 0.224, 0.225 }; // Rois for InferList, InferList2 const std::vector rois = { cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}), cv::Rect(cv::Point{50, 100}, cv::Size{250, 360}) }; void preprocess(const cv::Mat& src, cv::Mat& dst) { const int new_h = 224; const int new_w = 224; cv::Mat tmp, cvt, rsz; cv::resize(src, rsz, cv::Size(new_w, new_h)); rsz.convertTo(cvt, CV_32F, 1.f / 255); tmp = (cvt - mean) / std; toCHW(tmp, dst); dst = dst.reshape(1, {1, 3, new_h, new_w}); } }; class ONNXMediaFrame : public ONNXClassification { public: const std::vector rois = { cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}), cv::Rect(cv::Point{50, 100}, cv::Size{250, 360}), cv::Rect(cv::Point{70, 10}, cv::Size{20, 260}), cv::Rect(cv::Point{5, 15}, cv::Size{200, 160}), }; const cv::Size sz{640, 480}; const cv::Mat m_in_y = initMatrixRandU(CV_8UC1, sz); const cv::Mat m_in_uv = initMatrixRandU(CV_8UC2, sz / 2); }; class ONNXGRayScale : public ONNXtest { public: void preprocess(const cv::Mat& src, cv::Mat& dst) { const int new_h = 64; const int new_w = 64; cv::Mat cvc, rsz, cvt; cv::cvtColor(src, cvc, cv::COLOR_BGR2GRAY); cv::resize(cvc, rsz, cv::Size(new_w, new_h)); rsz.convertTo(cvt, CV_32F); toCHW(cvt, dst); dst = dst.reshape(1, {1, 1, new_h, new_w}); } }; class ONNXWithRemap : public ONNXtest { private: size_t step_by_outs = 0; public: // This function checks each next cv::Mat in out_gapi vector for next call. // end_mark is edge of correct data template void validate(const T end_mark) { GAPI_Assert(!out_gapi.empty() && !out_onnx.empty()); ASSERT_EQ(out_gapi.size(), out_onnx.size()); GAPI_Assert(step_by_outs < out_gapi.size()); const T* op = out_onnx.at(step_by_outs).ptr(); const T* gp = out_gapi.at(step_by_outs).ptr(); // Checking that graph output larger than onnx output const auto out_size = std::min(out_onnx.at(step_by_outs).total(), out_gapi.at(step_by_outs).total()); GAPI_Assert(out_size != 0u); for (size_t d_idx = 0; d_idx < out_size; ++d_idx) { if (gp[d_idx] == end_mark) break; ASSERT_EQ(op[d_idx], gp[d_idx]); } ++step_by_outs; } }; class ONNXRCNN : public ONNXWithRemap { private: const cv::Scalar rcnn_mean = { 102.9801, 115.9465, 122.7717 }; const float range_max = 1333; const float range_min = 800; public: void preprocess(const cv::Mat& src, cv::Mat& dst) { cv::Mat rsz, cvt, chw, mn; const auto get_ratio = [&](const int dim) -> float { return ((dim > range_max) || (dim < range_min)) ? dim > range_max ? range_max / dim : range_min / dim : 1.f; }; const auto ratio_h = get_ratio(src.rows); const auto ratio_w = get_ratio(src.cols); const auto new_h = static_cast(ratio_h * src.rows); const auto new_w = static_cast(ratio_w * src.cols); cv::resize(src, rsz, cv::Size(new_w, new_h)); rsz.convertTo(cvt, CV_32F, 1.f); toCHW(cvt, chw); mn = chw - rcnn_mean; const int padded_h = std::ceil(new_h / 32.f) * 32; const int padded_w = std::ceil(new_w / 32.f) * 32; cv::Mat pad_im(cv::Size(padded_w, 3 * padded_h), CV_32F, 0.f); pad_im(cv::Rect(0, 0, mn.cols, mn.rows)) += mn; dst = pad_im.reshape(1, {3, padded_h, padded_w}); } }; class ONNXYoloV3 : public ONNXWithRemap { public: std::vector ins; void constructYoloInputs(const cv::Mat& src) { const int yolo_in_h = 416; const int yolo_in_w = 416; cv::Mat yolov3_input, shape, prep_mat; cv::resize(src, yolov3_input, cv::Size(yolo_in_w, yolo_in_h)); shape.create(cv::Size(2, 1), CV_32F); float* ptr = shape.ptr(); ptr[0] = src.cols; ptr[1] = src.rows; preprocess(yolov3_input, prep_mat); ins = {prep_mat, shape}; } private: void preprocess(const cv::Mat& src, cv::Mat& dst) { cv::Mat cvt; src.convertTo(cvt, CV_32F, 1.f / 255.f); toCHW(cvt, dst); dst = dst.reshape(1, {1, 3, 416, 416}); } }; } // anonymous namespace TEST_F(ONNXClassification, Infer) { useModel("classification/squeezenet/model/squeezenet1.0-9"); in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); // ONNX_API code cv::Mat processed_mat; preprocess(in_mat, processed_mat); infer(processed_mat, out_onnx); // G_API code G_API_NET(SqueezNet, , "squeeznet"); cv::GMat in; cv::GMat out = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(out)); // NOTE: We have to normalize U8 tensor // so cfgMeanStd() is here auto net = cv::gapi::onnx::Params { model_path }.cfgMeanStd({ mean }, { std }); comp.apply(cv::gin(in_mat), cv::gout(out_gapi.front()), cv::compile_args(cv::gapi::networks(net))); // Validate validate(); } TEST_F(ONNXClassification, InferTensor) { useModel("classification/squeezenet/model/squeezenet1.0-9"); in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); // Create tensor cv::Mat tensor; preprocess(in_mat, tensor); // ONNX_API code infer(tensor, out_onnx); // G_API code G_API_NET(SqueezNet, , "squeeznet"); cv::GMat in; cv::GMat out = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(out)); auto net = cv::gapi::onnx::Params { model_path }; comp.apply(cv::gin(tensor), cv::gout(out_gapi.front()), cv::compile_args(cv::gapi::networks(net))); // Validate validate(); } TEST_F(ONNXClassification, InferROI) { useModel("classification/squeezenet/model/squeezenet1.0-9"); in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); const auto ROI = rois.at(0); // ONNX_API code cv::Mat roi_mat; preprocess(in_mat(ROI), roi_mat); infer(roi_mat, out_onnx); // G_API code G_API_NET(SqueezNet, , "squeeznet"); cv::GMat in; cv::GOpaque rect; cv::GMat out = cv::gapi::infer(rect, in); cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out)); // NOTE: We have to normalize U8 tensor // so cfgMeanStd() is here auto net = cv::gapi::onnx::Params { model_path }.cfgMeanStd({ mean }, { std }); comp.apply(cv::gin(in_mat, ROI), cv::gout(out_gapi.front()), cv::compile_args(cv::gapi::networks(net))); // Validate validate(); } TEST_F(ONNXClassification, InferROIList) { useModel("classification/squeezenet/model/squeezenet1.0-9"); in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); // ONNX_API code for (size_t i = 0; i < rois.size(); ++i) { cv::Mat roi_mat; preprocess(in_mat(rois[i]), roi_mat); infer(roi_mat, out_onnx); } // G_API code G_API_NET(SqueezNet, , "squeeznet"); cv::GMat in; cv::GArray rr; cv::GArray out = cv::gapi::infer(rr, in); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out)); // NOTE: We have to normalize U8 tensor // so cfgMeanStd() is here auto net = cv::gapi::onnx::Params { model_path }.cfgMeanStd({ mean }, { std }); comp.apply(cv::gin(in_mat, rois), cv::gout(out_gapi), cv::compile_args(cv::gapi::networks(net))); // Validate validate(); } TEST_F(ONNXClassification, Infer2ROIList) { useModel("classification/squeezenet/model/squeezenet1.0-9"); in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); // ONNX_API code for (size_t i = 0; i < rois.size(); ++i) { cv::Mat roi_mat; preprocess(in_mat(rois[i]), roi_mat); infer(roi_mat, out_onnx); } // G_API code G_API_NET(SqueezNet, , "squeeznet"); cv::GMat in; cv::GArray rr; cv::GArray out = cv::gapi::infer2(in, rr); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out)); // NOTE: We have to normalize U8 tensor // so cfgMeanStd() is here auto net = cv::gapi::onnx::Params { model_path }.cfgMeanStd({ mean }, { std }); comp.apply(cv::gin(in_mat, rois), cv::gout(out_gapi), cv::compile_args(cv::gapi::networks(net))); // Validate validate(); } TEST_F(ONNXWithRemap, InferDynamicInputTensor) { useModel("object_detection_segmentation/tiny-yolov2/model/tinyyolov2-8"); in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); // Create tensor cv::Mat cvt, rsz, tensor; cv::resize(in_mat, rsz, cv::Size{416, 416}); rsz.convertTo(cvt, CV_32F, 1.f / 255.f); toCHW(cvt, tensor); tensor = tensor.reshape(1, {1, 3, 416, 416}); // ONNX_API code infer(tensor, out_onnx); // G_API code G_API_NET(YoloNet, , "YoloNet"); cv::GMat in; cv::GMat out = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(out)); auto net = cv::gapi::onnx::Params{ model_path } .cfgPostProc({cv::GMatDesc{CV_32F, {1, 125, 13, 13}}}, remapYolo) .cfgOutputLayers({"out"}); comp.apply(cv::gin(tensor), cv::gout(out_gapi.front()), cv::compile_args(cv::gapi::networks(net))); // Validate validate(-1.f); } TEST_F(ONNXGRayScale, InferImage) { useModel("body_analysis/emotion_ferplus/model/emotion-ferplus-8"); in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); // ONNX_API code cv::Mat prep_mat; preprocess(in_mat, prep_mat); infer(prep_mat, out_onnx); // G_API code G_API_NET(EmotionNet, , "emotion-ferplus"); cv::GMat in; cv::GMat out = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(out)); auto net = cv::gapi::onnx::Params { model_path } .cfgNormalize({ false }); // model accepts 0..255 range in FP32; comp.apply(cv::gin(in_mat), cv::gout(out_gapi.front()), cv::compile_args(cv::gapi::networks(net))); // Validate validate(); } TEST_F(ONNXWithRemap, InferMultiOutput) { useModel("object_detection_segmentation/ssd-mobilenetv1/model/ssd_mobilenet_v1_10"); in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); // ONNX_API code const auto prep_mat = in_mat.reshape(1, {1, in_mat.rows, in_mat.cols, in_mat.channels()}); infer(prep_mat, out_onnx); cv::Mat onnx_conv_out({1, 1, 200, 7}, CV_32F); remapToIESSDOut({out_onnx[3], out_onnx[0], out_onnx[2], out_onnx[1]}, onnx_conv_out); out_onnx.clear(); out_onnx.push_back(onnx_conv_out); // G_API code G_API_NET(MobileNet, , "ssd_mobilenet"); cv::GMat in; cv::GMat out = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(out)); auto net = cv::gapi::onnx::Params{ model_path } .cfgOutputLayers({"detection_output"}) .cfgPostProc({cv::GMatDesc{CV_32F, {1, 1, 200, 7}}}, remapSSDPorts); comp.apply(cv::gin(in_mat), cv::gout(out_gapi.front()), cv::compile_args(cv::gapi::networks(net))); // Validate validate(-1.f); } TEST_F(ONNXMediaFrame, InferBGR) { useModel("classification/squeezenet/model/squeezenet1.0-9"); in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); // ONNX_API code cv::Mat processed_mat; preprocess(in_mat, processed_mat); infer(processed_mat, out_onnx); // G_API code auto frame = MediaFrame::Create(in_mat); G_API_NET(SqueezNet, , "squeeznet"); cv::GFrame in; cv::GMat out = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(out)); // NOTE: We have to normalize U8 tensor // so cfgMeanStd() is here auto net = cv::gapi::onnx::Params { model_path }.cfgMeanStd({ mean }, { std }); comp.apply(cv::gin(frame), cv::gout(out_gapi.front()), cv::compile_args(cv::gapi::networks(net))); // Validate validate(); } TEST_F(ONNXMediaFrame, InferYUV) { useModel("classification/squeezenet/model/squeezenet1.0-9"); in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); const auto frame = MediaFrame::Create(m_in_y, m_in_uv); // ONNX_API code cv::Mat pp; cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12); cv::Mat processed_mat; preprocess(pp, processed_mat); infer(processed_mat, out_onnx); // G_API code G_API_NET(SqueezNet, , "squeeznet"); cv::GFrame in; cv::GMat out = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(out)); // NOTE: We have to normalize U8 tensor // so cfgMeanStd() is here auto net = cv::gapi::onnx::Params { model_path }.cfgMeanStd({ mean }, { std }); comp.apply(cv::gin(frame), cv::gout(out_gapi.front()), cv::compile_args(cv::gapi::networks(net))); // Validate validate(); } TEST_F(ONNXMediaFrame, InferROIBGR) { useModel("classification/squeezenet/model/squeezenet1.0-9"); in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); auto frame = MediaFrame::Create(in_mat); // ONNX_API code cv::Mat roi_mat; preprocess(in_mat(rois.front()), roi_mat); infer(roi_mat, out_onnx); // G_API code G_API_NET(SqueezNet, , "squeeznet"); cv::GFrame in; cv::GOpaque rect; cv::GMat out = cv::gapi::infer(rect, in); cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out)); // NOTE: We have to normalize U8 tensor // so cfgMeanStd() is here auto net = cv::gapi::onnx::Params { model_path }.cfgMeanStd({ mean }, { std }); comp.apply(cv::gin(frame, rois.front()), cv::gout(out_gapi.front()), cv::compile_args(cv::gapi::networks(net))); // Validate validate(); } TEST_F(ONNXMediaFrame, InferROIYUV) { useModel("classification/squeezenet/model/squeezenet1.0-9"); in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); const auto frame = MediaFrame::Create(m_in_y, m_in_uv); // ONNX_API code cv::Mat pp; cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12); cv::Mat roi_mat; preprocess(pp(rois.front()), roi_mat); infer(roi_mat, out_onnx); // G_API code G_API_NET(SqueezNet, , "squeeznet"); cv::GFrame in; cv::GOpaque rect; cv::GMat out = cv::gapi::infer(rect, in); cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out)); // NOTE: We have to normalize U8 tensor // so cfgMeanStd() is here auto net = cv::gapi::onnx::Params { model_path }.cfgMeanStd({ mean }, { std }); comp.apply(cv::gin(frame, rois.front()), cv::gout(out_gapi.front()), cv::compile_args(cv::gapi::networks(net))); // Validate validate(); } TEST_F(ONNXMediaFrame, InferListBGR) { useModel("classification/squeezenet/model/squeezenet1.0-9"); in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); const auto frame = MediaFrame::Create(in_mat); // ONNX_API code for (size_t i = 0; i < rois.size(); ++i) { cv::Mat roi_mat; preprocess(in_mat(rois[i]), roi_mat); infer(roi_mat, out_onnx); } // G_API code G_API_NET(SqueezNet, , "squeeznet"); cv::GFrame in; cv::GArray rr; cv::GArray out = cv::gapi::infer(rr, in); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out)); // NOTE: We have to normalize U8 tensor // so cfgMeanStd() is here auto net = cv::gapi::onnx::Params { model_path }.cfgMeanStd({ mean }, { std }); comp.apply(cv::gin(frame, rois), cv::gout(out_gapi), cv::compile_args(cv::gapi::networks(net))); // Validate validate(); } TEST_F(ONNXMediaFrame, InferListYUV) { useModel("classification/squeezenet/model/squeezenet1.0-9"); in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); const auto frame = MediaFrame::Create(m_in_y, m_in_uv); // ONNX_API code cv::Mat pp; cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12); for (size_t i = 0; i < rois.size(); ++i) { cv::Mat roi_mat; preprocess(pp(rois[i]), roi_mat); infer(roi_mat, out_onnx); } // G_API code G_API_NET(SqueezNet, , "squeeznet"); cv::GFrame in; cv::GArray rr; cv::GArray out = cv::gapi::infer(rr, in); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out)); // NOTE: We have to normalize U8 tensor // so cfgMeanStd() is here auto net = cv::gapi::onnx::Params { model_path }.cfgMeanStd({ mean }, { std }); comp.apply(cv::gin(frame, rois), cv::gout(out_gapi), cv::compile_args(cv::gapi::networks(net))); // Validate validate(); } TEST_F(ONNXRCNN, InferWithDisabledOut) { useModel("object_detection_segmentation/faster-rcnn/model/FasterRCNN-10"); in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); cv::Mat pp; preprocess(in_mat, pp); // ONNX_API code infer(pp, out_onnx, {"6379", "6383"}); // G_API code using FRCNNOUT = std::tuple; G_API_NET(FasterRCNN, , "FasterRCNN"); auto net = cv::gapi::onnx::Params{model_path} .cfgOutputLayers({"out1", "out2"}) .cfgPostProc({cv::GMatDesc{CV_32F, {7,4}}, cv::GMatDesc{CV_32F, {7}}}, remapRCNNPortsDO, {"6383", "6379"}); cv::GMat in, out1, out2; std::tie(out1, out2) = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2)); out_gapi.resize(num_out); comp.apply(cv::gin(pp), cv::gout(out_gapi[0], out_gapi[1]), cv::compile_args(cv::gapi::networks(net))); // Validate validate(-1.f); validate(-1.f); } TEST_F(ONNXMediaFrame, InferList2BGR) { useModel("classification/squeezenet/model/squeezenet1.0-9"); in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); const auto frame = MediaFrame::Create(in_mat); // ONNX_API code for (size_t i = 0; i < rois.size(); ++i) { cv::Mat roi_mat; preprocess(in_mat(rois[i]), roi_mat); infer(roi_mat, out_onnx); } // G_API code G_API_NET(SqueezNet, , "squeeznet"); cv::GFrame in; cv::GArray rr; cv::GArray out = cv::gapi::infer2(in, rr); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out)); // NOTE: We have to normalize U8 tensor // so cfgMeanStd() is here auto net = cv::gapi::onnx::Params { model_path }.cfgMeanStd({ mean }, { std }); comp.apply(cv::gin(frame, rois), cv::gout(out_gapi), cv::compile_args(cv::gapi::networks(net))); // Validate validate(); } TEST_F(ONNXMediaFrame, InferList2YUV) { useModel("classification/squeezenet/model/squeezenet1.0-9"); in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); const auto frame = MediaFrame::Create(m_in_y, m_in_uv); // ONNX_API code cv::Mat pp; cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12); for (size_t i = 0; i < rois.size(); ++i) { cv::Mat roi_mat; preprocess(pp(rois[i]), roi_mat); infer(roi_mat, out_onnx); } // G_API code G_API_NET(SqueezNet, , "squeeznet"); cv::GFrame in; cv::GArray rr; cv::GArray out = cv::gapi::infer2(in, rr); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out)); // NOTE: We have to normalize U8 tensor // so cfgMeanStd() is here auto net = cv::gapi::onnx::Params { model_path }.cfgMeanStd({ mean }, { std }); comp.apply(cv::gin(frame, rois), cv::gout(out_gapi), cv::compile_args(cv::gapi::networks(net))); // Validate validate(); } TEST_F(ONNXYoloV3, InferConstInput) { useModel("object_detection_segmentation/yolov3/model/yolov3-10"); in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); constructYoloInputs(in_mat); // ONNX_API code infer(ins, out_onnx); // G_API code using OUT = std::tuple; G_API_NET(YoloNet, , "yolov3"); auto net = cv::gapi::onnx::Params{model_path} .constInput("image_shape", ins[1]) .cfgInputLayers({"input_1"}) .cfgOutputLayers({"out1", "out2", "out3"}) .cfgPostProc({cv::GMatDesc{CV_32F, {1, 10000, 4}}, cv::GMatDesc{CV_32F, {1, 80, 10000}}, cv::GMatDesc{CV_32S, {5, 3}}}, remapYoloV3); cv::GMat in, out1, out2, out3; std::tie(out1, out2, out3) = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2, out3)); out_gapi.resize(num_out); comp.apply(cv::gin(ins[0]), cv::gout(out_gapi[0], out_gapi[1], out_gapi[2]), cv::compile_args(cv::gapi::networks(net))); // Validate validate(-1.f); validate(-1.f); validate(-1); } TEST_F(ONNXYoloV3, InferBSConstInput) { // This test checks the case when a const input is used // and all input layer names are specified. // Const input has the advantage. It is expected behavior. useModel("object_detection_segmentation/yolov3/model/yolov3-10"); in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); constructYoloInputs(in_mat); // Tensor with incorrect image size // is used for check case when InputLayers and constInput have same names cv::Mat bad_shape; bad_shape.create(cv::Size(2, 1), CV_32F); float* ptr = bad_shape.ptr(); ptr[0] = 590; ptr[1] = 12; // ONNX_API code infer(ins, out_onnx); // G_API code using OUT = std::tuple; G_API_NET(YoloNet, , "yolov3"); auto net = cv::gapi::onnx::Params{model_path} // Data from const input will be used to infer .constInput("image_shape", ins[1]) // image_shape - const_input has same name .cfgInputLayers({"input_1", "image_shape"}) .cfgOutputLayers({"out1", "out2", "out3"}) .cfgPostProc({cv::GMatDesc{CV_32F, {1, 10000, 4}}, cv::GMatDesc{CV_32F, {1, 80, 10000}}, cv::GMatDesc{CV_32S, {5, 3}}}, remapYoloV3); cv::GMat in1, in2, out1, out2, out3; std::tie(out1, out2, out3) = cv::gapi::infer(in1, in2); cv::GComputation comp(cv::GIn(in1, in2), cv::GOut(out1, out2, out3)); out_gapi.resize(num_out); comp.apply(cv::gin(ins[0], bad_shape), cv::gout(out_gapi[0], out_gapi[1], out_gapi[2]), cv::compile_args(cv::gapi::networks(net))); // Validate validate(-1.f); validate(-1.f); validate(-1); } TEST_F(ONNXRCNN, ConversionInt64to32) { useModel("object_detection_segmentation/faster-rcnn/model/FasterRCNN-10"); in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); cv::Mat dst; preprocess(in_mat, dst); // ONNX_API code infer(dst, out_onnx); // G_API code using FRCNNOUT = std::tuple; G_API_NET(FasterRCNN, , "FasterRCNN"); auto net = cv::gapi::onnx::Params{model_path} .cfgOutputLayers({"out1", "out2", "out3"}) .cfgPostProc({cv::GMatDesc{CV_32F, {7,4}}, cv::GMatDesc{CV_32S, {7}}, cv::GMatDesc{CV_32F, {7}}}, remapRCNNPortsC); cv::GMat in, out1, out2, out3; std::tie(out1, out2, out3) = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2, out3)); out_gapi.resize(num_out); comp.apply(cv::gin(dst), cv::gout(out_gapi[0], out_gapi[1], out_gapi[2]), cv::compile_args(cv::gapi::networks(net))); // Validate validate(-1.f); validate(-1); validate(-1.f); } TEST_F(ONNXWithRemap, InferOutReallocation) { useModel("object_detection_segmentation/ssd-mobilenetv1/model/ssd_mobilenet_v1_10"); in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false)); // G_API code G_API_NET(MobileNet, , "ssd_mobilenet"); auto net = cv::gapi::onnx::Params{model_path} .cfgOutputLayers({"detection_boxes"}) .cfgPostProc({cv::GMatDesc{CV_32F, {1,100,4}}}, reallocSSDPort); cv::GMat in; cv::GMat out1; out1 = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(out1)); EXPECT_THROW(comp.apply(cv::gin(in_mat), cv::gout(out_gapi[0]), cv::compile_args(cv::gapi::networks(net))), std::exception); } } // namespace opencv_test #endif // HAVE_ONNX