/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #ifdef HAVE_TBB #include "tbb/task_scheduler_init.h" #endif using namespace cv; using namespace std; class CV_solvePnPRansac_Test : public cvtest::BaseTest { public: CV_solvePnPRansac_Test() { eps[SOLVEPNP_ITERATIVE] = 1.0e-2; eps[SOLVEPNP_EPNP] = 1.0e-2; eps[SOLVEPNP_P3P] = 1.0e-2; eps[SOLVEPNP_DLS] = 1.0e-2; totalTestsCount = 10; } ~CV_solvePnPRansac_Test() {} protected: void generate3DPointCloud(vector& points, Point3f pmin = Point3f(-1, -1, 5), Point3f pmax = Point3f(1, 1, 10)) { const Point3f delta = pmax - pmin; for (size_t i = 0; i < points.size(); i++) { Point3f p(float(rand()) / RAND_MAX, float(rand()) / RAND_MAX, float(rand()) / RAND_MAX); p.x *= delta.x; p.y *= delta.y; p.z *= delta.z; p = p + pmin; points[i] = p; } } void generateCameraMatrix(Mat& cameraMatrix, RNG& rng) { const double fcMinVal = 1e-3; const double fcMaxVal = 100; cameraMatrix.create(3, 3, CV_64FC1); cameraMatrix.setTo(Scalar(0)); cameraMatrix.at(0,0) = rng.uniform(fcMinVal, fcMaxVal); cameraMatrix.at(1,1) = rng.uniform(fcMinVal, fcMaxVal); cameraMatrix.at(0,2) = rng.uniform(fcMinVal, fcMaxVal); cameraMatrix.at(1,2) = rng.uniform(fcMinVal, fcMaxVal); cameraMatrix.at(2,2) = 1; } void generateDistCoeffs(Mat& distCoeffs, RNG& rng) { distCoeffs = Mat::zeros(4, 1, CV_64FC1); for (int i = 0; i < 3; i++) distCoeffs.at(i,0) = rng.uniform(0.0, 1.0e-6); } void generatePose(Mat& rvec, Mat& tvec, RNG& rng) { const double minVal = 1.0e-3; const double maxVal = 1.0; rvec.create(3, 1, CV_64FC1); tvec.create(3, 1, CV_64FC1); for (int i = 0; i < 3; i++) { rvec.at(i,0) = rng.uniform(minVal, maxVal); tvec.at(i,0) = rng.uniform(minVal, maxVal/10); } } virtual bool runTest(RNG& rng, int mode, int method, const vector& points, const double* epsilon, double& maxError) { Mat rvec, tvec; vector inliers; Mat trueRvec, trueTvec; Mat intrinsics, distCoeffs; generateCameraMatrix(intrinsics, rng); if (mode == 0) distCoeffs = Mat::zeros(4, 1, CV_64FC1); else generateDistCoeffs(distCoeffs, rng); generatePose(trueRvec, trueTvec, rng); vector projectedPoints; projectedPoints.resize(points.size()); projectPoints(Mat(points), trueRvec, trueTvec, intrinsics, distCoeffs, projectedPoints); for (size_t i = 0; i < projectedPoints.size(); i++) { if (i % 20 == 0) { projectedPoints[i] = projectedPoints[rng.uniform(0,(int)points.size()-1)]; } } solvePnPRansac(points, projectedPoints, intrinsics, distCoeffs, rvec, tvec, false, 500, 0.5, 0.99, inliers, method); bool isTestSuccess = inliers.size() >= points.size()*0.95; double rvecDiff = norm(rvec-trueRvec), tvecDiff = norm(tvec-trueTvec); isTestSuccess = isTestSuccess && rvecDiff < epsilon[method] && tvecDiff < epsilon[method]; double error = rvecDiff > tvecDiff ? rvecDiff : tvecDiff; //cout << error << " " << inliers.size() << " " << eps[method] << endl; if (error > maxError) maxError = error; return isTestSuccess; } void run(int) { ts->set_failed_test_info(cvtest::TS::OK); vector points, points_dls; const int pointsCount = 500; points.resize(pointsCount); generate3DPointCloud(points); const int methodsCount = 4; RNG rng = ts->get_rng(); for (int mode = 0; mode < 2; mode++) { for (int method = 0; method < methodsCount; method++) { double maxError = 0; int successfulTestsCount = 0; for (int testIndex = 0; testIndex < totalTestsCount; testIndex++) { if (runTest(rng, mode, method, points, eps, maxError)) successfulTestsCount++; } //cout << maxError << " " << successfulTestsCount << endl; if (successfulTestsCount < 0.7*totalTestsCount) { ts->printf( cvtest::TS::LOG, "Invalid accuracy for method %d, failed %d tests from %d, maximum error equals %f, distortion mode equals %d\n", method, totalTestsCount - successfulTestsCount, totalTestsCount, maxError, mode); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); } } } } double eps[4]; int totalTestsCount; }; class CV_solvePnP_Test : public CV_solvePnPRansac_Test { public: CV_solvePnP_Test() { eps[SOLVEPNP_ITERATIVE] = 1.0e-6; eps[SOLVEPNP_EPNP] = 1.0e-6; eps[SOLVEPNP_P3P] = 1.0e-4; eps[SOLVEPNP_DLS] = 1.0e-4; totalTestsCount = 1000; } ~CV_solvePnP_Test() {} protected: virtual bool runTest(RNG& rng, int mode, int method, const vector& points, const double* epsilon, double& maxError) { Mat rvec, tvec; Mat trueRvec, trueTvec; Mat intrinsics, distCoeffs; generateCameraMatrix(intrinsics, rng); if (mode == 0) distCoeffs = Mat::zeros(4, 1, CV_64FC1); else generateDistCoeffs(distCoeffs, rng); generatePose(trueRvec, trueTvec, rng); std::vector opoints; if (method == 2) { opoints = std::vector(points.begin(), points.begin()+4); } else if(method == 3) { opoints = std::vector(points.begin(), points.begin()+50); } else opoints = points; vector projectedPoints; projectedPoints.resize(opoints.size()); projectPoints(Mat(opoints), trueRvec, trueTvec, intrinsics, distCoeffs, projectedPoints); solvePnP(opoints, projectedPoints, intrinsics, distCoeffs, rvec, tvec, false, method); double rvecDiff = norm(rvec-trueRvec), tvecDiff = norm(tvec-trueTvec); bool isTestSuccess = rvecDiff < epsilon[method] && tvecDiff < epsilon[method]; double error = rvecDiff > tvecDiff ? rvecDiff : tvecDiff; if (error > maxError) maxError = error; return isTestSuccess; } }; TEST(Calib3d_SolvePnPRansac, accuracy) { CV_solvePnPRansac_Test test; test.safe_run(); } TEST(Calib3d_SolvePnP, accuracy) { CV_solvePnP_Test test; test.safe_run(); } #ifdef HAVE_TBB TEST(DISABLED_Calib3d_SolvePnPRansac, concurrency) { int count = 7*13; Mat object(1, count, CV_32FC3); randu(object, -100, 100); Mat camera_mat(3, 3, CV_32FC1); randu(camera_mat, 0.5, 1); camera_mat.at(0, 1) = 0.f; camera_mat.at(1, 0) = 0.f; camera_mat.at(2, 0) = 0.f; camera_mat.at(2, 1) = 0.f; Mat dist_coef(1, 8, CV_32F, cv::Scalar::all(0)); vector image_vec; Mat rvec_gold(1, 3, CV_32FC1); randu(rvec_gold, 0, 1); Mat tvec_gold(1, 3, CV_32FC1); randu(tvec_gold, 0, 1); projectPoints(object, rvec_gold, tvec_gold, camera_mat, dist_coef, image_vec); Mat image(1, count, CV_32FC2, &image_vec[0]); Mat rvec1, rvec2; Mat tvec1, tvec2; { // limit concurrency to get deterministic result cv::theRNG().state = 20121010; tbb::task_scheduler_init one_thread(1); solvePnPRansac(object, image, camera_mat, dist_coef, rvec1, tvec1); } if(1) { Mat rvec; Mat tvec; // parallel executions for(int i = 0; i < 10; ++i) { cv::theRNG().state = 20121010; solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec); } } { // single thread again cv::theRNG().state = 20121010; tbb::task_scheduler_init one_thread(1); solvePnPRansac(object, image, camera_mat, dist_coef, rvec2, tvec2); } double rnorm = cvtest::norm(rvec1, rvec2, NORM_INF); double tnorm = cvtest::norm(tvec1, tvec2, NORM_INF); EXPECT_LT(rnorm, 1e-6); EXPECT_LT(tnorm, 1e-6); } #endif