#!/usr/bin/env python ''' example to show optical flow estimation using DISOpticalFlow USAGE: dis_opt_flow.py [] Keys: 1 - toggle HSV flow visualization 2 - toggle glitch 3 - toggle spatial propagation of flow vectors 4 - toggle temporal propagation of flow vectors ESC - exit ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 as cv import video def draw_flow(img, flow, step=16): h, w = img.shape[:2] y, x = np.mgrid[step/2:h:step, step/2:w:step].reshape(2,-1).astype(int) fx, fy = flow[y,x].T lines = np.vstack([x, y, x+fx, y+fy]).T.reshape(-1, 2, 2) lines = np.int32(lines + 0.5) vis = cv.cvtColor(img, cv.COLOR_GRAY2BGR) cv.polylines(vis, lines, 0, (0, 255, 0)) for (x1, y1), (x2, y2) in lines: cv.circle(vis, (x1, y1), 1, (0, 255, 0), -1) return vis def draw_hsv(flow): h, w = flow.shape[:2] fx, fy = flow[:,:,0], flow[:,:,1] ang = np.arctan2(fy, fx) + np.pi v = np.sqrt(fx*fx+fy*fy) hsv = np.zeros((h, w, 3), np.uint8) hsv[...,0] = ang*(180/np.pi/2) hsv[...,1] = 255 hsv[...,2] = np.minimum(v*4, 255) bgr = cv.cvtColor(hsv, cv.COLOR_HSV2BGR) return bgr def warp_flow(img, flow): h, w = flow.shape[:2] flow = -flow flow[:,:,0] += np.arange(w) flow[:,:,1] += np.arange(h)[:,np.newaxis] res = cv.remap(img, flow, None, cv.INTER_LINEAR) return res if __name__ == '__main__': import sys print(__doc__) try: fn = sys.argv[1] except IndexError: fn = 0 cam = video.create_capture(fn) ret, prev = cam.read() prevgray = cv.cvtColor(prev, cv.COLOR_BGR2GRAY) show_hsv = False show_glitch = False use_spatial_propagation = False use_temporal_propagation = True cur_glitch = prev.copy() inst = cv.DISOpticalFlow.create(cv.DISOPTICAL_FLOW_PRESET_MEDIUM) inst.setUseSpatialPropagation(use_spatial_propagation) flow = None while True: ret, img = cam.read() gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) if flow is not None and use_temporal_propagation: #warp previous flow to get an initial approximation for the current flow: flow = inst.calc(prevgray, gray, warp_flow(flow,flow)) else: flow = inst.calc(prevgray, gray, None) prevgray = gray cv.imshow('flow', draw_flow(gray, flow)) if show_hsv: cv.imshow('flow HSV', draw_hsv(flow)) if show_glitch: cur_glitch = warp_flow(cur_glitch, flow) cv.imshow('glitch', cur_glitch) ch = 0xFF & cv.waitKey(5) if ch == 27: break if ch == ord('1'): show_hsv = not show_hsv print('HSV flow visualization is', ['off', 'on'][show_hsv]) if ch == ord('2'): show_glitch = not show_glitch if show_glitch: cur_glitch = img.copy() print('glitch is', ['off', 'on'][show_glitch]) if ch == ord('3'): use_spatial_propagation = not use_spatial_propagation inst.setUseSpatialPropagation(use_spatial_propagation) print('spatial propagation is', ['off', 'on'][use_spatial_propagation]) if ch == ord('4'): use_temporal_propagation = not use_temporal_propagation print('temporal propagation is', ['off', 'on'][use_temporal_propagation]) cv.destroyAllWindows()