
The OpenCV Tutorials
Release 2.3

July 21, 2011

CONTENTS

1 Introduction to OpenCV 3
1.1 Installation in Linux . 5
1.2 Using OpenCV with gcc and CMake . 6
1.3 Using OpenCV with Eclipse (plugin CDT) . 8
1.4 Installation in Windows . 13
1.5 How to build applications with OpenCV inside the Microsoft Visual Studio 24
1.6 Using Android binary package with Eclipse . 30
1.7 Load and Display an Image . 41
1.8 Load, Modify, and Save an Image . 44

2 core module. The Core Functionality 47
2.1 Mat - The Basic Image Container . 49
2.2 How to scan images, lookup tables and time measurement with OpenCV 54
2.3 Adding (blending) two images using OpenCV . 57
2.4 Changing the contrast and brightness of an image! . 59
2.5 Basic Drawing . 63
2.6 Fancy Drawing! . 67
2.7 Mask operations on matrixes . 72

3 imgproc module. Image Processing 73
3.1 Smoothing Images . 78
3.2 Eroding and Dilating . 83
3.3 More Morphology Transformations . 89
3.4 Image Pyramids . 95
3.5 Basic Thresholding Operations . 101
3.6 Making your own linear filters! . 109
3.7 Adding borders to your images . 113
3.8 Sobel Derivatives . 117
3.9 Laplace Operator . 123
3.10 Canny Edge Detector . 127
3.11 Hough Line Transform . 132
3.12 Hough Circle Transform . 138
3.13 Remapping . 142
3.14 Affine Transformations . 148
3.15 Histogram Equalization . 154
3.16 Histogram Calculation . 160
3.17 Histogram Comparison . 167
3.18 Back Projection . 172
3.19 Template Matching . 177

i

3.20 Finding contours in your image . 185
3.21 Convex Hull . 187
3.22 Creating Bounding boxes and circles for contours . 189
3.23 Creating Bounding rotated boxes and ellipses for contours . 191
3.24 Image Moments . 193
3.25 Point Polygon Test . 196

4 highgui module. High Level GUI and Media 199
4.1 Adding a Trackbar to our applications! . 200

5 calib3d module. Camera calibration and 3D reconstruction 205

6 feature2d module. 2D Features framework 207
6.1 Harris corner detector . 208
6.2 Shi-Tomasi corner detector . 210
6.3 Creating yor own corner detector . 213
6.4 Detecting corners location in subpixeles . 217

7 video module. Video analysis 221

8 objdetect module. Object Detection 223

9 ml module. Machine Learning 225

10 gpu module. GPU-Accelerated Computer Vision 227

11 General tutorials 229

ii

The OpenCV Tutorials, Release 2.3

The following links describe a set of basic OpenCV tutorials. All the source code mentioned here is provide as part
of the OpenCV regular releases, so check before you start copy & pasting the code. The list of tutorials below is
automatically generated from reST files located in our SVN repository.

As always, we would be happy to hear your comments and receive your contributions on any tutorial.

• Introduction to OpenCV

You will learn how to setup OpenCV on your computer!

• core module. The Core Functionality

Here you will learn the about the basic building blocks of the library. A
must read and know for understanding how to manipulate the images on a
pixel level.

• imgproc module. Image Processing

In this section you will learn about the image processing (manipulation)
functions inside OpenCV.

• highgui module. High Level GUI and Media

This section contains valuable tutorials about how to read/save your im-
age/video files and how to use the built-in graphical user interface of the
library.

• calib3d module. Camera calibration and 3D reconstruction

Although we got most of our images in a 2D format they do come from a 3D
world. Here you will learn how to find out from the 2D images information
about the 3D world.

• feature2d module. 2D Features framework

CONTENTS 1

The OpenCV Tutorials, Release 2.3

Learn about how to use the feature points detectors, descriptors and match-
ing framework found inside OpenCV.

• video module. Video analysis

Look here in order to find use on your video stream algoritms like: motion
extraction, feature tracking and foreground extractions.

• objdetect module. Object Detection

Ever wondered how your digital camera detects peoples and faces? Look
here to find out!

• ml module. Machine Learning

Use the powerfull machine learning classes for statistical classification, re-
gression and clustering of data.

• gpu module. GPU-Accelerated Computer Vision

Squeeze out every little computation power from your system by using the
power of your video card to run the OpenCV algorithms.

• General tutorials

These tutorials are the bottom of the iceberg as they link together multiple
of the modules presented above in order to solve complex problems.

2 CONTENTS

CHAPTER

ONE

INTRODUCTION TO OPENCV

Here you can read tutorials about how to set up your computer to work with the OpenCV library. Additionaly you can
find a few very basic sample source code that will let introduce you to the world of the OpenCV.

• Linux

Title: Installation in Linux
Compatibility: > OpenCV 2.0
Author: Ana Huamán
We will learn how to setup OpenCV in your computer!

Title: Using OpenCV with gcc and CMake
Compatibility: > OpenCV 2.0
Author: Ana Huamán
We will learn how to compile your first project using gcc and CMake

Title: Using OpenCV with Eclipse (plugin CDT)
Compatibility: > OpenCV 2.0
Author: Ana Huamán
We will learn how to compile your first project using the Eclipse environ-
ment

• Windows

Title: Installation in Windows
Compatibility: > OpenCV 2.0
Author: Bernát Gábor
You will learn how to setup OpenCV in your Windows Operating System!

3

The OpenCV Tutorials, Release 2.3

Title: How to build applications with OpenCV inside the Microsoft Visual
Studio
Compatibility: > OpenCV 2.0
Author: Bernát Gábor
You will learn what steps you need to perform in order to use the OpenCV
library inside a new Microsoft Visual Studio project.

• Android

Title: Using Android binary package with Eclipse
Compatibility: > OpenCV 2.3.1
Author: Andrey Kamaev
You will learn how to setup OpenCV for Android platform!

• From where to start?

Title: Load and Display an Image
Compatibility: > OpenCV 2.0
Author: Ana Huamán
We will learn how to display an image using OpenCV

Title: Load, Modify, and Save an Image
Compatibility: > OpenCV 2.0
Author: Ana Huamán
We will learn how to save an Image in OpenCV...plus a small conversion to
grayscale

4 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.3

1.1 Installation in Linux

These steps have been tested for Ubuntu 10.04 but should work with other distros.

Required packages

• GCC 4.x or later. This can be installed with

sudo apt-get install build-essential

• CMake 2.6 or higher

• Subversion (SVN) client

• GTK+2.x or higher, including headers

• pkgconfig

• libpng, zlib, libjpeg, libtiff, libjasper with development files (e.g. libpjeg-dev)

• Python 2.3 or later with developer packages (e.g. python-dev)

• SWIG 1.3.30 or later

• libavcodec

• libdc1394 2.x

All the libraries above can be installed via Terminal or by using Synaptic Manager

Getting OpenCV source code

You can use the latest stable OpenCV version available in sourceforge or you can grab the latest snapshot from the
SVN repository:

Getting the latest stable OpenCV version

• Go to http://sourceforge.net/projects/opencvlibrary

• Download the source tarball and unpack it

Getting the cutting-edge OpenCV from SourceForge SVN repository

Launch SVN client and checkout either

1. the current OpenCV snapshot from here: https://code.ros.org/svn/opencv/trunk

2. or the latest tested OpenCV snapshot from here: http://code.ros.org/svn/opencv/tags/latest_tested_snapshot

In Ubuntu it can be done using the following command, e.g.:

cd ~/<my_working _directory>
svn co https://code.ros.org/svn/opencv/trunk

1.1. Installation in Linux 5

http://sourceforge.net/projects/opencvlibrary
https://code.ros.org/svn/opencv/trunk
http://code.ros.org/svn/opencv/tags/latest_tested_snapshot

The OpenCV Tutorials, Release 2.3

Building OpenCV from source using CMake, using the command line

1. Create a temporary directory, which we denote as <cmake_binary_dir>, where you want to put the generated
Makefiles, project files as well the object filees and output binaries

2. Enter the <cmake_binary_dir> and type

cmake [<some optional parameters>] <path to the OpenCV source directory>

For example

cd ~/opencv
mkdir release
cd release
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX= /usr/local

3. Enter the created temporary directory (<cmake_binary_dir>) and proceed with:

make
sudo make install

1.2 Using OpenCV with gcc and CMake

Note: We assume that you have successfully installed OpenCV in your workstation.

The easiest way of using OpenCV in your code is to use CMake. A few advantages (taken from the Wiki):

• No need to change anything when porting between Linux and Windows

• Can easily be combined with other tools by CMake(i.e. Qt, ITK and VTK)

If you are not familiar with CMake, checkout the tutorial on its website.

Steps

Create a program using OpenCV

Let’s use a simple program such as DisplayImage.cpp shown below.

#include <cv.h>
#include <highgui.h>

using namespace cv;

int main(int argc, char** argv)
{

Mat image;
image = imread(argv[1], 1);

if(argc != 2 || !image.data)
{

printf("No image data \n");
return -1;

}

6 Chapter 1. Introduction to OpenCV

http://www.cmake.org/
http://www.cmake.org/cmake/help/cmake_tutorial.html

The OpenCV Tutorials, Release 2.3

namedWindow("Display Image", CV_WINDOW_AUTOSIZE);
imshow("Display Image", image);

waitKey(0);

return 0;
}

Create a CMake file

Now you have to create your CMakeLists.txt file. It should look like this:

project(DisplayImage)
find_package(OpenCV REQUIRED)
add_executable(DisplayImage DisplayImage)
target_link_libraries(DisplayImage ${OpenCV_LIBS})

Generate the executable

This part is easy, just proceed as with any other project using CMake:

cd <DisplayImage_directory>
cmake .
make

Result

By now you should have an executable (called DisplayImage in this case). You just have to run it giving an image
location as an argument, i.e.:

./DisplayImage lena.jpg

You should get a nice window as the one shown below:

1.2. Using OpenCV with gcc and CMake 7

The OpenCV Tutorials, Release 2.3

1.3 Using OpenCV with Eclipse (plugin CDT)

Note: Two ways, one by forming a project directly, and another by CMake

Prerequisites

1. Having installed Eclipse in your workstation (only the CDT plugin for C/C++ is needed). You can follow the
following steps:

• Go to the Eclipse site

• Download Eclipse IDE for C/C++ Developers . Choose the link according to your workstation.

2. Having installed OpenCV. If not yet, go here.

Making a project

1. Start Eclipse. Just run the executable that comes in the folder.

2. Go to File -> New -> C/C++ Project

3. Choose a name for your project (i.e. DisplayImage). An Empty Project should be okay for this example.

4. Leave everything else by default. Press Finish.

5. Your project (in this case DisplayImage) should appear in the Project Navigator (usually at the left side of your
window).

8 Chapter 1. Introduction to OpenCV

http://www.eclipse.org/
http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/heliossr2

The OpenCV Tutorials, Release 2.3

6. Now, let’s add a source file using OpenCV:

• Right click on DisplayImage (in the Navigator). New -> Folder .

• Name your folder src and then hit Finish

• Right click on your newly created src folder. Choose New source file:

• Call it DisplayImage.cpp. Hit Finish

7. So, now you have a project with a empty .cpp file. Let’s fill it with some sample code (in other words, copy and
paste the snippet below):

1.3. Using OpenCV with Eclipse (plugin CDT) 9

The OpenCV Tutorials, Release 2.3

#include <cv.h>
#include <highgui.h>

using namespace cv;

int main(int argc, char** argv)
{

Mat image;
image = imread(argv[1], 1);

if(argc != 2 || !image.data)
{

printf("No image data \n");
return -1;

}

namedWindow("Display Image", CV_WINDOW_AUTOSIZE);
imshow("Display Image", image);

waitKey(0);

return 0;
}

8. We are only missing one final step: To tell OpenCV where the OpenCV headers and libraries are. For this, do
the following:

• Go to Project–>Properties

• In C/C++ Build, click on Settings. At the right, choose the Tool Settings Tab. Here we will enter the
headers and libraries info:

(a) In GCC C++ Compiler, go to Includes. In Include paths(-l) you should include the path of the
folder where opencv was installed. In our example, this is /usr/local/include/opencv.

Note: If you do not know where your opencv files are, open the Terminal and type:

pkg-config --cflags opencv

For instance, that command gave me this output:

-I/usr/local/include/opencv -I/usr/local/include

(b) Now go to GCC C++ Linker,there you have to fill two spaces:

First in Library search path (-L) you have to write the path to where the opencv libraries reside, in
my case the path is:

/usr/local/lib

Then in Libraries(-l) add the OpenCV libraries that you may need. Usually just the 3 first on the list
below are enough (for simple applications) . In my case, I am putting all of them since I plan to use
the whole bunch:

10 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.3

opencv_core opencv_imgproc opencv_highgui opencv_ml opencv_video opencv_features2d
opencv_calib3d opencv_objdetect opencv_contrib opencv_legacy opencv_flann

If you don’t know where your libraries are (or you are just psychotic and want to make sure the path
is fine), type in Terminal:

pkg-config --libs opencv

My output (in case you want to check) was: .. code-block:: bash

-L/usr/local/lib -lopencv_core -lopencv_imgproc -lopencv_highgui -lopencv_ml -
lopencv_video -lopencv_features2d -lopencv_calib3d -lopencv_objdetect -lopencv_contrib
-lopencv_legacy -lopencv_flann

Now you are done. Click OK

• Your project should be ready to be built. For this, go to Project->Build all

In the Console you should get something like

If you check in your folder, there should be an executable there.

1.3. Using OpenCV with Eclipse (plugin CDT) 11

The OpenCV Tutorials, Release 2.3

Running the executable

So, now we have an executable ready to run. If we were to use the Terminal, we would probably do something like:

cd <DisplayImage_directory>
cd src
./DisplayImage ../images/HappyLittleFish.png

Assuming that the image to use as the argument would be located in <DisplayIm-
age_directory>/images/HappyLittleFish.png. We can still do this, but let’s do it from Eclipse:

1. Go to Run->Run Configurations

2. Under C/C++ Application you will see the name of your executable + Debug (if not, click over C/C++ Applica-
tion a couple of times). Select the name (in this case DisplayImage Debug).

3. Now, in the right side of the window, choose the Arguments Tab. Write the path of the image file we want to
open (path relative to the workspace/DisplayImage folder). Let’s use HappyLittleFish.png:

4. Click on the Apply button and then in Run. An OpenCV window should pop up with the fish image (or whatever
you used).

5. Congratulations! You are ready to have fun with OpenCV using Eclipse.

V2: Using CMake+OpenCV with Eclipse (plugin CDT)

(See the getting started <http://opencv.willowgarage.com/wiki/Getting_started> section of the OpenCV Wiki)

Say you have or create a new file, helloworld.cpp in a directory called foo:

#include <cv.h>
#include <highgui.h>
int main (int argc, char **argv)
{

cvNamedWindow("My Window", 1);
IplImage *img = cvCreateImage(cvSize(640, 480), IPL_DEPTH_8U, 1);
CvFont font;

12 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.3

double hScale = 1.0;
double vScale = 1.0;
int lineWidth = 1;
cvInitFont(&font, CV_FONT_HERSHEY_SIMPLEX | CV_FONT_ITALIC,

hScale, vScale, 0, lineWidth);
cvPutText(img, "Hello World!", cvPoint(200, 400), &font,

cvScalar(255, 255, 0));
cvShowImage("My Window", img);
cvWaitKey();
return 0;

}

1. Create a build directory, say, under foo: mkdir /build. Then cd build.

2. Put a CmakeLists.txt file in build:

PROJECT(helloworld_proj)
FIND_PACKAGE(OpenCV REQUIRED)
ADD_EXECUTABLE(helloworld helloworld.cxx)
TARGET_LINK_LIBRARIES(helloworld ${OpenCV_LIBS})

1. Run: cmake-gui .. and make sure you fill in where opencv was built.

2. Then click configure and then generate. If it’s OK, quit cmake-gui

3. Run make -j4 (the ‘‘-j4‘‘ is optional, it just tells the compiler to build in 4 threads). Make sure it builds.

4. Start eclipse. Put the workspace in some directory but not in foo or foo\\build

5. Right click in the Project Explorer section. Select Import And then open the C/C++ filter. Choose *Existing
Code as a Makefile Project‘‘

6. Name your project, say helloworld. Browse to the Existing Code location foo\\build (where you ran your
cmake-gui from). Select Linux GCC in the “Toolchain for Indexer Settings” and press Finish.

7. Right click in the Project Explorer section. Select Properties. Under C/C++ Build, set the build direc-
tory: from something like ${workspace_loc:/helloworld} to ${workspace_loc:/helloworld}/build
since that’s where you are building to.

1. You can also optionally modify the Build command: from make to something like make VERBOSE=1 -j4
which tells the compiler to produce detailed symbol files for debugging and also to compile in 4 parallel threads.

1. Done!

1.4 Installation in Windows

The description here was tested by the author using the Windows 7 SP1 operating system (OS). Nevertheless, it should
also work on any other Windows OS too. If you encounter errors after following the steps described here feel free to
contact us via our user group and we will try to fix your problem.

Note: To use the OpenCV library you have two options: Installation by using the pre-built libraries or Installation
by making your own libraries from the source files. While the first one is easier to complete, it only works if you
are coding inside the latest Microsoft Visual Studio integrated development environments (IDE) and doesn’t takes
advantage of the most novel technologies we integrate into our library.

1.4. Installation in Windows 13

http://tech.groups.yahoo.com/group/OpenCV/

The OpenCV Tutorials, Release 2.3

Installation by using the pre-built libraries

1. Open up a web browser and go to: http://sourceforge.net/projects/opencvlibrary/files/opencv-win/

2. Open the folder for the latest version (currently this is 2.3).

3. Choose a build you want to use and download it. The naming conventions used will show what kind of support
they offer. For example:

• vs2010 means the Visual Studio

• win32 means that it is for 32 bit applications in the OS

• gpu means that it includes the support for using your GPU in order to further increase the performance of
the library).

If you downloaded the source files present here see Installation by making your own libraries from the source
files.

4. Make sure you have admin rights. Start the setup and follow the wizard. Agree to the ” License Agreement ” .

5. While adding the OpenCV library to the system path is a good decision for a better control of this we will do it
manually. Therefore, make sure you do not set this option.

6. Most of the time it is a good idea to install the source files as this will allow for you to debug into the OpenCV
library, if it is necessary. Therefore, just follow the default settings of the wizard and finish the installation.

7. You can check the installation at the chosen path as you can see below.

8. To finalize the installation go to the Set the OpenCV enviroment variable and add it to the systems path section.

Installation by making your own libraries from the source files

You may find the content of this tutorial also inside the following videos: Part 1 and Part 2, hosted on YouTube.

If you are building your own libraries you can take either the source files from our latest:

• stable and tested build - https://code.ros.org/svn/opencv/branches/

• development build - https://code.ros.org/svn/opencv/trunk/

While the later one may contain a couple of new and experimental algorithms, performance increases and interface
improvements, be aware, that it may also contain many-many bugs. Using the first one is recommended in most of the
cases. That is unless you are extending the OpenCV library itself or really need to most up to date version of it.

14 Chapter 1. Introduction to OpenCV

http://sourceforge.net/projects/opencvlibrary/files/opencv-win/
https://www.youtube.com/watch?v=NnovZ1cTlMs
https://www.youtube.com/watch?v=qGNWMcfWwPU
https://code.ros.org/svn/opencv/branches/
https://code.ros.org/svn/opencv/trunk/

The OpenCV Tutorials, Release 2.3

Building the OpenCV library from scratch requires a couple of tools installed beforehand:

• An Integrated Developer Enviroment (IDE) preferably, or just a CC++ compiler that will actually make the
binary files. Here I will use the Microsoft Visual Studio. Nevertheless, you can use any other IDE that has a
valid C\C++ compiler.

• Then CMake is a neat tool that will make the project files (for your choosen IDE) from the OpenCV source files.
It will also allow an easy configuration of the OpenCV build files, in order to make binary files that fits exactly
to your needs.

• A Subversion Control System (SVN) to acquire the OpenCV source files. A good tool for this is TortoiseSVN.
Alternatively, you can just download an archived version of the source files from the Sourceforge OpenCV page.

OpenCV may come in multiple flavors. There is a “core” section that will work on its own. Nevertheless, they are a
couple of tools, libraries made by other organizations (so called 3rd parties) that offer services of which the OpenCV
may take advantage. These will improve in many ways its capabilities. In order to use any of them, you need to
download and install them on your system.

• The Python libraries are required to build the Python interface of OpenCV. For now use the version 2.7.x. This
is also a must have if you want to build the OpenCV documentation.

• Numpy is a scientific computing package for Python. Required for the Python interface.

• Intel © Threading Building Blocks (TBB) is used inside OpenCV for parallel code snippets. Using this will
make sure that the OpenCV library will take advantage of all the cores you have in your systems CPU.

• Intel © Integrated Performance Primitives (IPP) may be used to improve the performance of color conversion,
Haar training and DFT functions of the OpenCV library. Watch out as this isn’t a free service.

• OpenCV offers a somewhat fancier and more useful graphical user interface, than the default one by using the
Qt framework. For a quick overview of what this has to offer look into the documentations highgui module,
under the Qt New Functions section. Version 4.6 or later of the framework is required.

• Eigen is a C++ template library for linear algebra.

• The latest CUDA Toolkit will allow you to use the power lying inside your GPU. This will drastically improve
performance for some of the algorithms, like the HOG descriptor. Getting to work more and more of our
algorithms on the GPUs is a constant effort of the OpenCV team.

• OpenEXR source files are required for the library to work with this high dynamic range (HDR) image file
format.

• The OpenNI Framework contains a set of open source APIs that provide support for natural interaction with
devices via methods such as voice command recognition, hand gestures and body motion tracking.

• Miktex is the best TEX implementation on the Windows OS. It is required to build the OpenCV documentation.

• Sphinx is a python documentation generator and is the tool that will actually create the OpenCV documentation.
This on its own requires a couple of tools installed, I will cover this in depth at the How to Install Sphinx section.

Now I will describe the steps to follow for a full build (using all the above frameworks, tools and libraries). If you do
not need the support for some of these you can just freely skip those parts.

Building the library

1. Make sure you have a working IDE with a valid compiler. In case of the Microsoft Visual Studio just install it
and make sure it starts up.

2. Install CMake. Simply follow the wizard, no need to add it to the path. The default install options are great. No
need to change them.

1.4. Installation in Windows 15

https://www.microsoft.com/visualstudio/en-us
http://www.cmake.org/cmake/resources/software.html
http://tortoisesvn.net/downloads.html
http://sourceforge.net/projects/opencvlibrary/files/opencv-win/
http://www.python.org/getit/
http://numpy.scipy.org/
http://threadingbuildingblocks.org/file.php?fid=77
http://software.intel.com/en-us/articles/intel-ipp/
http://qt.nokia.com/downloads
http://eigen.tuxfamily.org/index.php?title=Main_Page#Download
http://developer.nvidia.com/cuda-downloads
http://www.openexr.com/downloads.html
http://www.openni.org/
http://miktex.org/2.9/setup
https://secure.wikimedia.org/wikipedia/en/wiki/TeX
http://sphinx.pocoo.org/
http://www.cmake.org/cmake/resources/software.html

The OpenCV Tutorials, Release 2.3

3. Install TortoiseSVN. Choose the 32 or 64 bit version according to the type of OS you work in. Again follow the
wizard, default options are good. Restart of your system is required.

4. Choose a directory in your file system where you will download the OpenCV libraries. I recommend creating
a new one that has short path and no special charachters in it, for example D:/OpenCV. During this tutorial I’ll
suppose you’ve done so. If you use a different directory just change this front part of the path in my future
examples. Then, Right Click→ SVN Checkout... in the directory.

A window will appear where you can select from what repository you want to download source files (1) and to
which directory (2):

Add here either ones of the versions described above. Then push the OK button and be patient as the repository
currently is over 330MB to download. It will take some time until it is finished depending on your Internet
connection.

When you are done you should have a opencv and an opencv_extra directory as seen at (3).

5. In this section I will cover installing the 3rd party libraries.

(a) Download the Python libraries and install it with the default options. You will need a couple other python
extensions. Luckily installing all these may be automated by a nice tool called Setuptools. Download and
install again.

(b) Installing Sphinx is easy once you have installed Setuptools. This contains a little application that will
automatically connect to the python databases and download the latest version of many python scripts.

16 Chapter 1. Introduction to OpenCV

http://tortoisesvn.net/downloads.html
http://www.python.org/getit/
http://pypi.python.org/pypi/setuptools#downloads

The OpenCV Tutorials, Release 2.3

Start up a command window (enter cmd into the windows start menu and press enter) and use the CD
command to navigate to your Python folders Script sub-folder. Here just pass to the easy_install.exe as
argument the name of the program you want to install. Add the sphinx argument.

Note: The CD navigation command works only inside a drive. For example if you are somewhere in
the C: drive you cannot use it this to go to another drive (like for example D:). To do so you first need
to change drives letters. For this simply enter the command D:. Then you can use the CD to navigate to
specific folder inside the drive. Bonus tip: you can clear the screen by using the CLS command.

This will also install its prerequisites Jinja2 and Pygments.

(c) The easiest way to install Numpy is to just download its binaries from the sourceforga page. Make sure
your download and install exactly the binary for your python version (so for version 2.7).

(d) Download the Miktex and install it. Again just follow the wizard. At the fourth step make sure you select
for the “Install missing packages on-the-fly” the Yes option, as you can see on the image below. Again this
will take quite some time so be patient.

1.4. Installation in Windows 17

http://jinja.pocoo.org/docs/
http://pygments.org/
http://numpy.scipy.org/
http://sourceforge.net/projects/numpy/files/NumPy/
http://miktex.org/2.9/setup

The OpenCV Tutorials, Release 2.3

(e) For the Intel © Threading Building Blocks (TBB) download the source files and extract it inside a directory
on your system. For example let there be D:/OpenCV/dep. For installing the Intel © Integrated Perfor-
mance Primitives (IPP) the story is the same. For exctracting the archives I recommend using the 7-Zip
application.

(f) In case of the Eigen library it is again a case of download and extract to the D:/OpenCV/dep directory.

(g) Same as above with OpenEXR.

(h) For the OpenNI Framework you need to install both the development build and the PrimeSensor Module.

(i) For the CUDA you need again two modules: the latest CUDA Toolkit and the CUDA Tools SDK. Download
and install both of them with a complete option by using the 32 or 64 bit setups according to your OS.

(j) In case of the Qt framework you need to build yourself the binary files (unless you use the Microsoft Visual
Studio 2008 with 32 bit compiler). To do this go to the Qt Downloads page. Download the source files
(not the installers!!!):

Extract it into a nice and short named directory like D:/OpenCV/dep/qt/ . Then you need to build it. Start
up a Visual Studio Command Prompt (2010) by using the start menu search (or navigate through the start
menu All Programs → Microsoft Visual Studio 2010 → Visual Studio Tools → Visual Studio Command
Prompt (2010)).

18 Chapter 1. Introduction to OpenCV

http://threadingbuildingblocks.org/file.php?fid=77
http://software.intel.com/en-us/articles/intel-ipp/
http://software.intel.com/en-us/articles/intel-ipp/
http://www.7-zip.org/
http://eigen.tuxfamily.org/index.php?title=Main_Page#Download
http://www.openexr.com/downloads.html
http://www.openni.org/
http://www.openni.org/downloadfiles/opennimodules/openni-binaries/21-stable
http://www.openni.org/downloadfiles/opennimodules/openni-compliant-hardware-binaries/32-stable
http://developer.nvidia.com/cuda-downloads
http://qt.nokia.com/downloads
http://qt.nokia.com/downloads

The OpenCV Tutorials, Release 2.3

Now navigate to the extracted folder and enter inside it by using this console window. You should have a
folder containing files like Install, Make and so on. Use the dir command to list files inside your current
directory. Once arrived at this directory enter the following command:

configure.exe -release -no-webkit -no-phonon -no-phonon-backend -no-script -no-scripttools
-no-qt3support -no-multimedia -no-ltcg

Completing this will take around 10-20 minutes. Then enter the next command that will take a lot longer
(can easily take even more than a full hour):

nmake

After this set the Qt enviroment variables using the following command on Windows 7:

setx -m QTDIR D:/OpenCV/dep/qt/qt-everywhere-opensource-src-4.7.3

Also, add the built binary files path to the system path by using the Path Editor. In our case this is
D:/OpenCV/dep/qt/qt-everywhere-opensource-src-4.7.3/bin.

Note: If you plan on doing Qt application development you can also install at this point the Qt Visual
Studio Add-in. After this you can make and build Qt applications without using the Qt Creator. Everything
is nicely integrated into Visual Studio.

6. Now start the CMake (cmake-gui). You may again enter it in the start menu search or get it from the All Programs→ CMake 2.8→ CMake (cmake-gui). First, select the directory for the source files of the OpenCV library (1).
Then, specify a directory where you will build the binary files for OpenCV (2).

Press the Configure button to specify the compiler (and IDE) you want to use. Note that in case you can choose
between different compilers for making either 64 bit or 32 bit libraries. Select the one you use in your application
development.

1.4. Installation in Windows 19

http://www.redfernplace.com/software-projects/patheditor/

The OpenCV Tutorials, Release 2.3

CMake will start out and based on your system variables will try to automatically locate as many packages as
possible. You can modify the packages to use for the build in the WITH→ WITH_X menu points (where X is
the package abbreviation). Here are a list of current packages you can turn on or off:

Select all the packages you want to use and press again the Configure button. For an easier overview of the
build options make sure the Grouped option under the binary directory selection is turned on. For some of the
packages CMake may not find all of the required files or directories. In case of these CMake will throw an error
in its output window (located at the bottom of the GUI) and set its field values, to not found constants. For
example:

20 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.3

For these you need to manually set the queried directories or files path. After this press again the Configure
button to see if the value entered by you was accepted or not. Do this until all entries are good and you cannot
see errors in the field/value or the output part of the GUI. Now I want to emphasize an option that you will
definitely love: ENABLE → ENABLE_SOLUTION_FOLDERS. OpenCV will create many-many projects and
turning this option will make sure that they are categorized inside directories in the Solution Explorer. It is a
must have feature, if you ask me.

Furthermore, you need to select what part of OpenCV you want to build.

• BUILD_DOCS -> Build the documentation of OpenCV (there will be a separate project for building the
HTML and the PDF files).

• BUILD_EXAMPLES -> OpenCV comes with many example applications from which you may learn most
of the libraries capabilities. This will also come handy to easily try out if OpenCV is fully functional on
your computer.

• BUILD_JAVA_SUPPORT -> This is a fresh addition to OpenCV, which slowly start to support the java
language.

• BUILD_NEW_PYTHON_SUPPORT -> Self-explanatory. Create the binaries to use OpenCV from the
Python language.

• BUILD_PACKAGE -> Build a project that will build an OpenCV installer. With this you can easily install
your OpenCV flavor on other systems.

• BUILD_SHARED_LIBS -> With this you can control to build DLL files (when turned on) or static library
files (*.lib) otherwise.

• BUILD_TESTS -> Each module of OpenCV has a test project assigned to it. Building these test projects is
also a good way to try out, that the modules work just as expected on your system too.

Press again the Configure button and ensure no errors are reported. If this is the case you can tell CMake to
create the project files by pushing the Generate button. Go to the build directory and open the created OpenCV
solution. Depending on just how much of the above options you have selected the solution may contain quite a
lot of projects so be tolerant on the IDE at the startup. Now you need to build both the Release and the Debug
binaries. Use the drop-down menu on your IDE to change to another of these after building for one of them.

In the end you can observe the built binary files inside the bin directory:

1.4. Installation in Windows 21

The OpenCV Tutorials, Release 2.3

For the documentation you need to explicitly issue the build commands on the doc project for the PDF files
and on the doc_html for the HTML ones. Each of these will call Sphinx to do all the hard work. You can find
the generated documentation inside the Build/Doc/_html for the HTML pages and within the Build/Doc the
PDF manuals.

To collect the header and the binary files, that you will use during your own projects, into a separate directory
(simillary to how the pre-built binaries ship) you need to explicitely build the Install project.

This will create an install directory inside the Build one collecting all the built binaries into a single place. Use
this only after you built both the Release and Debug versions.

Note: To create an installer you need to install NSIS. Then just build the Package project to build the installer
into the Build/_CPack_Packages/win32/NSIS folder. You can then use this to distribute OpenCV with your
build settings on other systems.

To test your build just go into the Build/bin/Debug or Build/bin/Release directory and start a couple of
applications like the contours.exe. If they run, you are done. Otherwise, something definitely went awfully

22 Chapter 1. Introduction to OpenCV

http://nsis.sourceforge.net/Download

The OpenCV Tutorials, Release 2.3

wrong. In this case you should contact us via our user group. If everything is okay the contours.exe output
should resemble the following image (if built with Qt support):

Note: If you use the GPU module (CUDA libraries) make sure you also upgrade to the latest drivers of your
GPU. Error messages containing invalid entries in (or cannot find) the nvcuda.dll are caused mostly by old video
card drivers. For testing the GPU (if built) run the performance_gpu.exe sample application.

Set the OpenCV enviroment variable and add it to the systems path

First we set an enviroment variable to make easier our work. This will hold the install directory of our OpenCV library
that we use in our projects. Start up a command window and enter:

setx -m OPENCV_DIR D:\OpenCV\Build\Install

Here the directory is where you have your OpenCV binaries (installed or built). Inside this you should have folders
like bin and include. The -m should be added if you wish to make the settings computer wise, instead of user wise.

If you built static libraries then you are done. Otherwise, you need to add the bin folders path to the systems path.This
is cause you will use the OpenCV library in form of “Dynamic-link libraries” (also known as DLL). Inside these are
stored all the algorithms and information the OpenCV library contains. The operating system will load them only on
demand, during runtime. However, to do this he needs to know where they are. The systems PATH contains a list of
folders where DLLs can be found. Add the OpenCV library path to this and the OS will know where to look if he ever
needs the OpenCV binaries. Otherwise, you will need to copy the used DLLs right beside the applications executable
file (exe) for the OS to find it, which is highly unpleasent if you work on many projects. To do this start up again the
Path Editor and add the following new entry (right click in the application to bring up the menu):

%OPENCV_DIR%\bin

1.4. Installation in Windows 23

http://tech.groups.yahoo.com/group/OpenCV/
http://www.redfernplace.com/software-projects/patheditor/

The OpenCV Tutorials, Release 2.3

Save it to the registry and you are done. If you ever change the location of your install directories or want to try out
your applicaton with a different build all you will need to do is to update the OPENCV_DIR variable via the setx
command inside a command window.

Now you can continue reading the tutorials with the How to build applications with OpenCV inside the Microsoft
Visual Studio section. There you will find out how to use the OpenCV library in your own projects with the help of
the Microsoft Visual Studio IDE.

1.5 How to build applications with OpenCV inside the Microsoft Vi-
sual Studio

Everything I describe here will apply to the C\C++ interface of OpenCV. I start out from the assumption that you have
read and completed with success the Installation in Windows tutorial. Therefore, before you go any further make sure
you have an OpenCV directory that contains the OpenCV header files plus binaries and you have set the environment
variables as described here.

The OpenCV libraries, distributed by us, on the Microsoft Windows operating system are in a Dynamic Linked
Libraries (DLL). These have the advantage that all the content of the library are loaded only at runtime, on demand,
and that countless programs may use the same library file. This means that if you have ten applications using the
OpenCV library, no need to have around a version for each one of them. Of course you need to have the dll of the
OpenCV on all systems where you want to run your application.

Another approach is to use static libraries that have lib extensions. You may build these by using our source files as
described in the Installation in Windows tutorial. When you use this the library will be built-in inside your exe file. So
there is no chance that the user deletes them, for some reason. As a drawback your application will be larger one and
as, it will take more time to load it during its startup.

To build an application with OpenCV you need to do two things:

• Tell to the compiler how the OpenCV library looks. You do this by showing it the header files.

24 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.3

• Tell to the linker from where to get the functions or data structures of OpenCV, when they are needed.

If you use the lib system you must set the path where the library files are and specify in which one of them to
look. During the build the linker will look into these libraries and add the definitions and implementation of all
used functions and data structures to the executable file.

If you use the DLL system you must again specify all this, however now for a different reason. This is a
Microsoft OS specific stuff. It seems that the linker needs to know that where in the DLL to search for the data
structure or function at the runtime. This information is stored inside lib files. Nevertheless, they aren’t static
libraries. They are so called import libraries. This is why when you make some DLLs in Windows you will also
end up with some lib extension libraries. The good part is that at runtime only the DLL is required.

To pass on all this information to the Visual Studio IDE you can either do it globally (so all your future projects will
get these information) or locally (so only for you current project). The advantage of the global one is that you only
need to do it once; however, it may be undesirable to clump all your projects all the time with all these information. In
case of the global one how you do it depends on the Microsoft Visual Studio you use. There is a 2008 and previous
versions and a 2010 way of doing it. Inside the global section of this tutorial I’ll show what the main differences are.

The base item of a project in Visual Studio is a solution. A solution may contain multiple projects. Projects are the
building blocks of an application. Every project will realize something and you will have a main project in which you
can put together this project puzzle. In case of the many simple applications (like many of the tutorials will be) you
do not need to break down the application into modules. In these cases your main project will be the only existing
one. Now go create a new solution inside Visual studio by going through the File→ New→ Project menu selection.
Choose Win32 Console Application as type. Enter its name and select the path where to create it. Then in the upcoming
dialog make sure you create an empty project.

The local method

Every project is built separately from the others. Due to this every project has its own rule package. Inside this rule
packages are stored all the information the IDE needs to know to build your project. For any application there are
at least two build modes: a Release and a Debug one. The Debug has many features that exist so you can find and
resolve easier bugs inside your application. In contrast the Release is an optimized version, where the goal is to make
the application run as fast as possible or to be as small as possible. You may figure that these modes also require
different rules to use during build. Therefore, there exist different rule packages for each of your build modes. These
rule packages are called inside the IDE as project properties and you can view and modify them by using the Property
Manger. You can bring up this with View → Property Pages. Expand it and you can see the existing rule packages
(called Proporty Sheets).

1.5. How to build applications with OpenCV inside the Microsoft Visual Studio 25

The OpenCV Tutorials, Release 2.3

The really useful stuff of these is that you may create a rule package once and you can later just add it to your new
projects. Create it once and reuse it later. We want to create a new Property Sheet that will contain all the rules that
the compiler and linker needs to know. Of course we will need a separate one for the Debug and the Release Builds.
Start up with the Debug one as shown in the image below:

Use for example the OpenCV_Debug name. Then by selecting the sheet Right Click→ Properties. In the following I
will show to set the OpenCV rules locally, as I find unnecessary to pollute projects with custom rules that I do not use
it. Go the C++ groups General entry and under the “Additional Include Directories” add the path to your OpenCV
include.

$(OPENCV_DIR)\include

When adding third party libraries settings it is generally a good idea to use the power behind the environment variables.
The full location of the OpenCV library may change on each system. Moreover, you may even end up yourself with
moving the install directory for some reason. If you would give explicit paths inside your property sheet your project
will end up not working when you pass it further to someone else who has a different OpenCV install path. Moreover,
fixing this would require to manually modifying every explicit path. A more elegant solution is to use the environment
variables. Anything that you put inside a parenthesis started with a dollar sign will be replaced at runtime with the
current environment variables value. Here comes in play the environment variable setting we already made in our

26 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.3

previous tutorial.

Next go to the Linker→ General and under the “Additional Library Directories” add the libs directory:

$(OPENCV_DIR)\libs

Then you need to specify the libraries in which the linker should look into. To do this go to the Linker→ Input and
under the “Additional Dependencies” entry add the name of all modules which you want to use:

The names of the libraries are as follow:

opencv_(The Name of the module)(The version Number of the library you use)d.lib

A full list, for the currently latest trunk version would contain:

opencv_core231d.lib
opencv_imgproc231d.lib
opencv_highgui231d.lib
opencv_ml231d.lib
opencv_video231d.lib
opencv_features2d231d.lib
opencv_calib3d231d.lib
opencv_objdetect231d.lib
opencv_contrib231d.lib
opencv_legacy231d.lib
opencv_flann231d.lib

The letter d at the end just indicates that these are the libraries required for the debug. Now click ok to save and do the
same with a new property inside the Release rule section. Make sure to omit the d letters from the library names and
to save the property sheets with the save icon above them.

1.5. How to build applications with OpenCV inside the Microsoft Visual Studio 27

The OpenCV Tutorials, Release 2.3

You can find your property sheets inside your projects directory. At this point it is a wise decision to back them up
into some special directory, to always have them at hand in the future, whenever you create an OpenCV project. Note
that for Visual Studio 2010 the file extension is props, while for 2008 this is vsprops.

Next time when you make a new OpenCV project just use the “Add Existing Property Sheet...” menu entry inside the
Property Manager to easily add the OpenCV build rules.

The global method

In case you find to troublesome to add the property pages to each and every one of your projects you can also add this
rules to a “global property page”. However, this applies only to the additional include and library directories. The
name of the libraries to use you still need to specify manually by using for instance: a Property page.

In Visual Studio 2008 you can find this under the: Tools→ Options→ Projects and Solutions→ VC++ Directories.

In Visual Studio 2010 this has been moved to a global property sheet which is automatically added to every project
you create:

28 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.3

The process is the same as described in case of the local approach. Just add the include directories by using the
environment variable OPENCV_DIR.

Test it!

Now to try this out download our little test source code or get it from the sample code folder of the OpenCV sources.
Add this to your project and build it. Here’s its content:

1 #include <opencv2/core/core.hpp>
2 #include <opencv2/highgui/highgui.hpp>
3 #include <iostream>
4

5 using namespace cv;
6

7 int main(int argc, char** argv)
8 {
9 Mat image;

10 image = imread("opencv-logo.png"); // Read the file
11

12 if(! image.data) // Check for invalid input
13 {
14 std::cout << "Could not open or find the image" << std::endl ;
15 return -1;
16 }
17

18 namedWindow("Display window", CV_WINDOW_FREERATIO);// Create a window for display.
19 imshow("Display window", image); // Show our image inside it.
20

21 waitKey(0); // Wait for a keystroke in the window
22

23 return 0;
24 }

You can start a Visual Studio build from two places. Either inside from the IDE (keyboard combination: Control-F5)
or by navigating to your build directory and start the application with a double click. The catch is that these two aren’t
the same. When you start it from the IDE its current working directory is the projects directory, while otherwise it is
the folder where the application file currently is (so usually your build directory). Moreover, in case of starting from
the IDE the console window will not close once finished. It will wait for a keystroke of yours.

This is important to remember when you code inside the code open and save commands. You’re resources will be
saved (and queried for at opening!!!) relatively to your working directory. This is unless you give a full, explicit path
as parameter for the I/O functions. In the code above we open this OpenCV logo. Before starting up the application
make sure you place the image file in your current working directory. Modify the image file name inside the code to
try it out on other images too. Run it and voilá:

1.5. How to build applications with OpenCV inside the Microsoft Visual Studio 29

The OpenCV Tutorials, Release 2.3

Command line arguments with Visual Studio

Throughout some of our future tutorials you’ll see that the programs main input method will be by giving a runtime
argument. To do this you can just start up a commmand windows (cmd + Enter in the start menu), navigate to your
executable file and start it with an argument. So for example in case of my upper project this would look like:

1 D:
2 CD OpenCV\MySolutionName\Release
3 MySolutionName.exe exampleImage.jpg

Here I first changed my drive (if your project isn’t on the OS local drive), navigated to my project and start it with an
example image argument. While under Linux system it is common to fiddle around with the console window on the
Microsoft Windows many people come to use it almost never. Besides, adding the same argument again and again
while you are testing your application is, somewhat, a cumbersome task. Luckily, in the Visual Studio there is a menu
to automate all this:

Specify here the name of the inputs and while you start your application from the Visual Studio enviroment you have
automatic argument passing. In the next introductionary tutorial you’ll see an in-depth explanation of the upper source
code: Load and Display an Image.

1.6 Using Android binary package with Eclipse

This tutorial was tested using Ubuntu 10.04 and Windows 7 SP1 operating systems. Nevertheless, it should also work
on any other OSes supported by Android SDK (including Mac OS X). If you encounter errors after following the steps
described here feel free to contact us via android-opencv disscussion group https://groups.google.com/group/android-
opencv/ and we will try to fix your problem.

Setup environment to start Android Development

You need the following tools to be installed:

30 Chapter 1. Introduction to OpenCV

https://groups.google.com/group/android-opencv/
https://groups.google.com/group/android-opencv/

The OpenCV Tutorials, Release 2.3

1. Sun JDK 6

Visit http://www.oracle.com/technetwork/java/javase/downloads/index.html and download installer for your
OS.

Here is detailed JDK installation guide for Ubuntu and Mac OS:
http://source.android.com/source/initializing.html (only JDK sections are applicable for OpenCV)

Note: OpenJDK is not usable for Android development because Android SDK supports only Sun JDK.

2. Android SDK

Get the latest Android SDK from http://developer.android.com/sdk/index.html

Here is Google’s install guide for SDK http://developer.android.com/sdk/installing.html

Note: If you choose SDK packed into Windows installer then you should have installed 32-bit JRE. It does not
needed for Android development but installer is x86 application and requires 32-bit Java runtime.

Note: If you are running x64 version of Ubuntu Linux then you need ia32 shared libraries for use on amd64
and ia64 systems installed. You can install them with following command:

sudo apt-get install ia32-libs

For Red Hat based systems the following command might be helpful:

yum install libXtst.i386

3. Android SDK components

You need the following SDK components to be installed:

• Android SDK Tools, revision12 or newer

Older revisions should also work but they are not recommended.

• SDK Platform Android 2.2, API 8, revision 2 (also known as android-8)

This is minimal platform supported by OpenCV Java API. And it is set as default for OpenCV distribution.
It is possible to use platform having higher number with OpenCV package but it requires to edit OpenCV
project settings.

1.6. Using Android binary package with Eclipse 31

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://source.android.com/source/initializing.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/installing.html

The OpenCV Tutorials, Release 2.3

See Adding SDK Components for help with installing/updating SDK components.

4. Eclipse IDE

Check the Android SDK System Requirements document for a list of Eclipse versions that are compatible with
the Android SDK. For OpenCV 2.3.1 we recommend Eclipse 3.7 (Indigo) or Eclipse 3.6 (Helios). They work
well for OpenCV both under Windows and Linux.

If you have no Eclipse installed, you can download it from this location:

http://www.eclipse.org/downloads/

5. ADT plugin for Eclipse

Assuming that you have Eclipse IDE installed, as described above, follow these steps to download and install
the ADT plugin:

(a) Start Eclipse, then select Help > Install New Software...

(b) Click Add, in the top-right corner.

(c) In the Add Repository dialog that appears, enter “ADT Plugin” for the Name and the following URL for
the Location:

https://dl-ssl.google.com/android/eclipse/

(d) Click OK

Note: If you have trouble acquiring the plugin, try using “http” in the Location URL, instead of “https”
(https is preferred for security reasons).

(e) In the Available Software dialog, select the checkbox next to Developer Tools and click Next.

32 Chapter 1. Introduction to OpenCV

http://developer.android.com/sdk/adding-components.html
http://developer.android.com/sdk/requirements.html
http://www.eclipse.org/downloads/
https://dl-ssl.google.com/android/eclipse/

The OpenCV Tutorials, Release 2.3

(f) In the next window, you’ll see a list of the tools to be downloaded. Click Next.

(g) Read and accept the license agreements, then click Finish.

Note: If you get a security warning saying that the authenticity or validity of the software can’t be
established, click OK.

(h) When the installation completes, restart Eclipse.

These steps are copied from http://developer.android.com/sdk/eclipse-adt.html#downloading . Please, visit that
page if you have any troubles with ADT plugin installation.

Get the OpenCV package for Android development

1. Go to the http://sourceforge.net/projects/opencvlibrary/files/opencv-android/ and download the latest available
version. Currently it is OpenCV-2.3.1-beta1-android-bin.tar.bz2

2. Create new folder for Android+OpenCV development

3. Unpack the OpenCV package into that dir.

You can unpack it using any popular archiver (for example with 7-Zip):

On Unix you also can unpack using the following command:

tar -jxvf ~/Downloads/OpenCV-2.3.1-beta1-android-bin.tar.bz2

For this tutorial I have unpacked OpenCV into the C:\Work\android-opencv\ directory.

Open OpenCV library and samples in Eclipse

1. Start the Eclipse and choose your workspace location.

I recommend to start familiarising yourself with OpenCV for Android from new clean workspase. So I have
choosen my OpenCV package directory for new workspace:

1.6. Using Android binary package with Eclipse 33

http://developer.android.com/sdk/eclipse-adt.html#downloading
http://sourceforge.net/projects/opencvlibrary/files/opencv-android/
http://sourceforge.net/projects/opencvlibrary/files/opencv-android/2.3/OpenCV-2.3.1-beta1-android-bin.tar.bz2/download
http://www.7-zip.org/

The OpenCV Tutorials, Release 2.3

2. Configure your ADT plugin

Once you have created new worksapce you have to point the ADT plugin to the Android SDK directory. This
setting is stored in workspace metadata so this step is required each time when you are creating new workspace
for Android development. See Configuring the ADT Plugin document for the original instructions from Google.

• Select Window > Preferences... to open the Preferences panel (Mac OS X: Eclipse > Preferences):

• Select Android from the left panel.

You may see a dialog asking whether you want to send usage statistics to Google. If so, make your
choice and click Proceed. You cannot continue with this procedure until you click Proceed.

34 Chapter 1. Introduction to OpenCV

http://developer.android.com/sdk/eclipse-adt.html#configuring

The OpenCV Tutorials, Release 2.3

• For the SDK Location in the main panel, click Browse... and locate your Android SDK directory.

• Click Apply button at the bottom right corner of main panel:

• Click OK to close preferences dialog.

3. Import OpenCV and samples into workspace.

OpenCV library is packed as ready-for-use Android Library Project. You can simply reference it in your

1.6. Using Android binary package with Eclipse 35

http://developer.android.com/guide/developing/projects/index.html#LibraryProjects

The OpenCV Tutorials, Release 2.3

projects.

Each sample included into OpenCV-2.3.1-beta1-android-bin.tar.bz2 is a regular Android project that already
reference OpenCV library. Follow next steps to import OpenCV and samples into workspace:

• Right click on the Package Explorer window and choose Import... option from context menu:

• In the main panel select General > Existing Projects into Workspace and press Next buton:

• For the Select root directory in the main panel locate your OpenCV package folder. (If you have created
workspace in the package directory then just click Browse... button and instantly close directory choosing
dialog with OK button!) Eclipse should automatically locate OpenCV library and samples:

36 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.3

• Click Finish button to complete the import operation.

After clicking Finish button Eclipse will load all selected projects into workspace. And... will indicate numerous
errors:

However all these errors are only false-alarms!

To help Eclipse to understand that there are no any errors choose OpenCV library in Package Explorer (left

1.6. Using Android binary package with Eclipse 37

The OpenCV Tutorials, Release 2.3

mouse click) and press F5 button on your keyboard. Then choose any sample (except first samples in Tutorial
Base and Tutorial Advanced) and also press F5.

After this manipulation Eclips will rebuild your workspace and error icons will disappear one by one:

Once Eclipse completes build you will have clean workspace without any build error:

Note: If you are importing only OpenCV library without samples then instead of second refresh command (F5)
you might need to make Android Tools > Fix Project Properties from project context menu.

38 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.3

Running OpenCV Samples

At this point you should be able to build and run all samples except two from Advanced tutorial (these samples require
NDK to build working applications).

Also I want to note that only Tutorial 1 Basic - 0. Android Camera and Tutorial 1 Basic - 1. Add
OpenCV samples are able to run on Emulator from Android SDK. Other samples are using OpenCV Native Camera
which is supported only for ARM v7 CPUs.

Note: Latest Android SDK tools, revision 12 can run ARM v7 OS images but Google does not provide such images
within SDK.

Well, running samples from Eclipse is very simple:

• Connect your device with adb tool from Android SDK or create Emulator with camera support.

– See Managing Virtual Devices document for help with Android Emulator.

– See Using Hardware Devices for help with phisical devices.

• Select project you want to start in Package Explorer and just press Ctrl + F11 or select option Run > Run from
main menu, or click Run button on the toolbar.

• On first run Eclips will ask you how to run your application:

1.6. Using Android binary package with Eclipse 39

http://developer.android.com/guide/developing/devices/index.html
http://developer.android.com/guide/developing/device.html

The OpenCV Tutorials, Release 2.3

• Select the Android Application option and click OK button. Eclipse will install and run the sample.

Here is sample Tutorial 1 Basic - 1. Add OpenCV detecting edges using Canny algorithm from
OpenCV:

40 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.3

1.7 Load and Display an Image

Goal

In this tutorial you will learn how to:

• Load an image (using imread)

• Create a named OpenCV window (using namedWindow)

• Display an image in an OpenCV window (using imshow)

Source Code

Download the source code from here or look it up in our library at
samples/cpp/tutorial_code/introduction/display_image/display_image.cpp.

1.7. Load and Display an Image 41

http://opencv.willowgarage.com/documentation/cpp/highgui_reading_and_writing_images_and_video.html?highlight=imread#imread
http://opencv.willowgarage.com/documentation/cpp/highgui_user_interface.html?highlight=namedwindow#namedWindow
http://opencv.willowgarage.com/documentation/cpp/highgui_user_interface.html?highlight=imshow#imshow

The OpenCV Tutorials, Release 2.3

1 #include <opencv2/core/core.hpp>
2 #include <opencv2/highgui/highgui.hpp>
3 #include <iostream>
4

5 using namespace cv;
6 using namespace std;
7

8 int main(int argc, char** argv)
9 {

10 if(argc != 2)
11 {
12 cout <<" Usage: display_image ImageToLoadAndDisplay" << endl;
13 return -1;
14 }
15

16 Mat image;
17 image = imread(argv[1], CV_LOAD_IMAGE_COLOR); // Read the file
18

19 if(! image.data) // Check for invalid input
20 {
21 cout << "Could not open or find the image" << std::endl ;
22 return -1;
23 }
24

25 namedWindow("Display window", CV_WINDOW_AUTOSIZE);// Create a window for display.
26 imshow("Display window", image); // Show our image inside it.
27

28 waitKey(0); // Wait for a keystroke in the window
29 return 0;
30 }

Explanation

In OpenCV 2 we have multiple modules. Each one takes care of a different area or approach towards image processing.
You could already observe this in the structure of the user guide of these tutorials itself. Before you use any of them
you first need to include the header files where the content of each individual module is declared.

You’ll almost always end up using the:

• core section, as here are defined the basic building blocks of the library

• highgui module, as this contains the functions for input and output operations

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream>

We also include the iostream to facilitate console line output and input. To avoid data structure and function name
conflicts with other libraries, OpenCV has its own namespace: cv. To avoid the need appending prior each of these the
cv:: keyword you can import the namespace in the whole file by using the lines:

using namespace cv;
using namespace std;

This is true for the STL library too (used for console I/O). Now, let’s analyze the main function. We start up assuring
that we acquire a valid image name argument from the command line.

42 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.3

if(argc != 2)
{
cout <<" Usage: display_image ImageToLoadAndDisplay" << endl;
return -1;
}

Then create a Mat object that will store the data of the loaded image.

Mat image;

Now we call the imread function which loads the image name specified by the first argument (argv[1]). The second
argument specifies the format in what we want the image. This may be:

• CV_LOAD_IMAGE_UNCHANGED (<0) loads the image as is (including the alpha channel if present)

• CV_LOAD_IMAGE_GRAYSCALE (0) loads the image as an intensity one

• CV_LOAD_IMAGE_COLOR (>0) loads the image in the RGB format

image = imread(argv[1], CV_LOAD_IMAGE_COLOR); // Read the file

Note: OpenCV offers support for the image formats Windows bitmap (bmp), portable image formats (pbm, pgm,
ppm) and Sun raster (sr, ras). With help of plugins (you need to specify to use them if you build yourself the library,
nevertheless in the packages we ship present by default) you may also load image formats like JPEG (jpeg, jpg, jpe),
JPEG 2000 (jp2 - codenamed in the CMake as Jasper), TIFF files (tiff, tif) and portable network graphics (png).
Furthermore, OpenEXR is also a possibility.

After checking that the image data was loaded correctly, we want to display our image, so we create an OpenCV
window using the namedWindow function. These are automatically managed by OpenCV once you create them. For
this you need to specify its name and how it should handle the change of the image it contains from a size point of
view. It may be:

• CV_WINDOW_AUTOSIZE is the only supported one if you do not use the Qt backend. In this case the window
size will take up the size of the image it shows. No resize permitted!

• CV_WINDOW_NORMAL on Qt you may use this to allow window resize. The image will resize itself according
to the current window size. By using the | operator you also need to specify if you would like the image to keep
its aspect ratio (CV_WINDOW_KEEPRATIO) or not (CV_WINDOW_FREERATIO).

namedWindow("Display window", CV_WINDOW_AUTOSIZE);// Create a window for display.

Finally, to update the content of the OpenCV window with a new image use the imshow function. Specify the OpenCV
window name to update and the image to use during this operation:

imshow("Display window", image); // Show our image inside it.

Because we want our window to be displayed until the user presses a key (otherwise the program would end far too
quickly), we use the waitKey function whose only parameter is just how long should it wait for a user input (measured
in milliseconds). Zero means to wait forever.

waitKey(0); // Wait for a keystroke in the window

Result

• Compile your code and then run the executable giving an image path as argument. If you’re on Windows the
executable will of course contain an exe extension too. Of course assure the image file is near your program file.

1.7. Load and Display an Image 43

http://opencv.willowgarage.com/documentation/cpp/highgui_reading_and_writing_images_and_video.html?highlight=imread#imread
http://opencv.willowgarage.com/documentation/cpp/highgui_user_interface.html?highlight=namedwindow#namedWindow
http://opencv.willowgarage.com/documentation/cpp/highgui_user_interface.html?highlight=imshow#imshow
http://opencv.willowgarage.com/documentation/cpp/highgui_user_interface.html?highlight=namedwindow#cv-waitkey

The OpenCV Tutorials, Release 2.3

./DisplayImage HappyFish.jpg

• You should get a nice window as the one shown below:

1.8 Load, Modify, and Save an Image

Note: We assume that by now you know how to load an image using imread and to display it in a window (using
imshow). Read the Load and Display an Image tutorial otherwise.

Goals

In this tutorial you will learn how to:

• Load an image using imread

• Transform an image from RGB to Grayscale format by using cvtColor

• Save your transformed image in a file on disk (using imwrite)

Code

Here it is:

1 #include <cv.h>
2 #include <highgui.h>
3

4 using namespace cv;
5

6 int main(int argc, char** argv)
7 {
8 char* imageName = argv[1];
9

10 Mat image;
11 image = imread(imageName, 1);
12

13 if(argc != 2 || !image.data)

44 Chapter 1. Introduction to OpenCV

http://opencv.willowgarage.com/documentation/cpp/highgui_reading_and_writing_images_and_video.html?highlight=imread#imread
http://opencv.willowgarage.com/documentation/cpp/highgui_user_interface.html?highlight=imshow#imshow
http://opencv.willowgarage.com/documentation/cpp/highgui_reading_and_writing_images_and_video.html?highlight=imread#imread
http://opencv.willowgarage.com/documentation/cpp/imgproc_miscellaneous_image_transformations.html#cv-cvtcolor
http://opencv.willowgarage.com/documentation/cpp/highgui_reading_and_writing_images_and_video.html?highlight=imread#cv-imwrite

The OpenCV Tutorials, Release 2.3

14 {
15 printf(" No image data \n ");
16 return -1;
17 }
18

19 Mat gray_image;
20 cvtColor(image, gray_image, CV_RGB2GRAY);
21

22 imwrite("../../images/Gray_Image.jpg", gray_image);
23

24 namedWindow(imageName, CV_WINDOW_AUTOSIZE);
25 namedWindow("Gray image", CV_WINDOW_AUTOSIZE);
26

27 imshow(imageName, image);
28 imshow("Gray image", gray_image);
29

30 waitKey(0);
31

32 return 0;
33 }

Explanation

1. We begin by:

• Creating a Mat object to store the image information

• Load an image using imread, located in the path given by imageName. Fort this example, assume you are
loading a RGB image.

2. Now we are going to convert our image from RGB to Grayscale format. OpenCV has a really nice function to
do this kind of transformations:

cvtColor(image, gray_image, CV_RGB2GRAY);

As you can see, cvtColor takes as arguments:

• a source image (image)

• a destination image (gray_image), in which we will save the converted image.

• an additional parameter that indicates what kind of transformation will be performed. In this case we use
CV_RGB2GRAY (self-explanatory).

3. So now we have our new gray_image and want to save it on disk (otherwise it will get lost after the program
ends). To save it, we will use a function analagous to imread: imwrite

imwrite("../../images/Gray_Image.jpg", gray_image);

Which will save our gray_image as Gray_Image.jpg in the folder images located two levels up of my current
location.

4. Finally, let’s check out the images. We create two windows and use them to show the original image as well as
the new one:

namedWindow(imageName, CV_WINDOW_AUTOSIZE);
namedWindow("Gray image", CV_WINDOW_AUTOSIZE);

imshow(imageName, image);
imshow("Gray image", gray_image);

1.8. Load, Modify, and Save an Image 45

http://opencv.willowgarage.com/documentation/cpp/highgui_reading_and_writing_images_and_video.html?highlight=imread#imread
http://opencv.willowgarage.com/documentation/cpp/imgproc_miscellaneous_image_transformations.html#cv-cvtcolor
http://opencv.willowgarage.com/documentation/cpp/highgui_reading_and_writing_images_and_video.html?highlight=imread#imread
http://opencv.willowgarage.com/documentation/cpp/highgui_reading_and_writing_images_and_video.html?highlight=imread#cv-imwrite

The OpenCV Tutorials, Release 2.3

5. Add add the waitKey(0) function call for the program to wait forever for an user key press.

Result

When you run your program you should get something like this:

And if you check in your folder (in my case images), you should have a newly .jpg file named Gray_Image.jpg:

Congratulations, you are done with this tutorial!

46 Chapter 1. Introduction to OpenCV

CHAPTER

TWO

CORE MODULE. THE CORE
FUNCTIONALITY

Here you will learn the about the basic building blocks of the library. A must read and know for understanding how to
manipulate the images on a pixel level.

•

Title: Mat - The Basic Image Container
Compatibility: > OpenCV 2.0
Author: Bernát Gábor
You will learn how to store images in the memory and how to print out their
content to the console.

•

Title: How to scan images, lookup tables and time measurement with
OpenCV
Compatibility: > OpenCV 2.0
Author: Bernát Gábor
You’ll find out how to scan images (go through each of the image pixels)
with OpenCV. Bonus: time measurement with OpenCV.

•

Title: Adding (blending) two images using OpenCV
Compatibility: > OpenCV 2.0
Author: Ana Huamán
We will learn how to blend two images!

•

Title: Changing the contrast and brightness of an image!
Compatibility: > OpenCV 2.0
Author: Ana Huamán
We will learn how to change our image appearance!

47

The OpenCV Tutorials, Release 2.3

•

Title: Basic Drawing
Compatibility: > OpenCV 2.0
Author: Ana Huamán
We will learn how to draw simple geometry with OpenCV!

•

Title: * Fancy Drawing!
Compatibility: > OpenCV 2.0
Author: Ana Huamán
We will draw some fancy-looking stuff using OpenCV!

48 Chapter 2. core module. The Core Functionality

The OpenCV Tutorials, Release 2.3

2.1 Mat - The Basic Image Container

Goal

We have multiple ways to acquire digital images from the real world: digital cameras, scanners, computed tomography
or magnetic resonance imaging to just name a few. In every case what we (humans) see are images. However, when
transforming this to our digital devices what we record are numerical values for each of the points of the image.

For example in the above image you can see that the mirror of the care is nothing more than a matrix containing
all the intensity values of the pixel points. Now, how we get and store the pixels values may vary according to
what fits best our need, in the end all images inside a computer world may be reduced to numerical matrices and
some other information’s describing the matric itself. OpenCV is a computer vision library whose main focus is to
process and manipulate these information to find out further ones. Therefore, the first thing you need to learn and get
accommodated with is how OpenCV stores and handles images.

Mat

OpenCV has been around ever since 2001. In those days the library was built around a C interface. In those days
to store the image in the memory they used a C structure entitled IplImage. This is the one you’ll see in most of the
older tutorials and educational materials. The problem with this is that it brings to the table all the minuses of the
C language. The biggest issue is the manual management. It builds on the assumption that the user is responsible
for taking care of memory allocation and deallocation. While this is no issue in case of smaller programs once your
code base start to grove larger and larger it will be more and more a struggle to handle all this rather than focusing on
actually solving your development goal.

Luckily C++ came around and introduced the concept of classes making possible to build another road for the user:
automatic memory management (more or less). The good news is that C++ if fully compatible with C so no com-
patibility issues can arise from making the change. Therefore, OpenCV with its 2.0 version introduced a new C++
interface that by taking advantage of these offers a new way of doing things. A way, in which you do not need to fiddle
with memory management; making your code concise (less to write, to achieve more). The only main downside of the
C++ interface is that many embedded development systems at the moment support only C. Therefore, unless you are
targeting this platform, there’s no point on using the old methods (unless you’re a masochist programmer and you’re
asking for trouble).

The first thing you need to know about Mat is that you no longer need to manually allocate its size and release it as
soon as you do not need it. While doing this is still a possibility, most of the OpenCV functions will allocate its output
data manually. As a nice bonus if you pass on an already existing Mat object, what already has allocated the required
space for the matrix, this will be reused. In other words we use at all times only as much memory as much we must to
perform the task.

2.1. Mat - The Basic Image Container 49

The OpenCV Tutorials, Release 2.3

Mat is basically a class having two data parts: the matrix header (containing information such as the size of the matrix,
the method used for storing, at which address is the matrix stored and so on) and a pointer to the matrix containing
the pixel values (may take any dimensionality depending on the method chosen for storing) . The matrix header size
is constant. However, the size of the matrix itself may vary from image to image and usually is larger by order of
magnitudes. Therefore, when you’re passing on images in your program and at some point you need to create a copy
of the image the big price you will need to build is for the matrix itself rather than its header. OpenCV is an image
processing library. It contains a large collection of image processing functions. To solve a computational challenge
most of the time you will end up using multiple functions of the library. Due to this passing on images to functions
is a common practice. We should not forget that we are talking about image processing algorithms, which tend to be
quite computational heavy. The last thing we want to do is to further decrease the speed of your program by making
unnecessary copies of potentially large images.

To tackle this issue OpenCV uses a reference counting system. The idea is that each Mat object has its own header,
however the matrix may be shared between two instance of them by having their matrix pointer point to the same
address. Moreover, the copy operators will only copy the headers, and as also copy the pointer to the large matrix
too, however not the matrix itself.

1 Mat A, C; // creates just the header parts
2 A = imread(argv[1], CV_LOAD_IMAGE_COLOR); // here we’ll know the method used (allocate matrix)
3

4 Mat B(A); // Use the copy constructor
5

6 C = A; // Assignment operator

All the above objects, in the end point to the same single data matrix. Their headers are different, however making any
modification using either one of them will affect all the other ones too. In practice the different objects just provide
different access method to the same underlying data. Nevertheless, their header parts are different. The real interesting
part comes that you can create headers that refer only to a subsection of the full data. For example, to create a region
of interest (ROI) in an image you just create a new header with the new boundaries:

1 Mat D (A, Rect(10, 10, 100, 100)); // using a rectangle
2 Mat E = A(Range:all(), Range(1,3)); // using row and column boundaries

Now you may ask if the matrix itself may belong to multiple Mat objects who will take responsibility for its cleaning
when it’s no longer needed. The short answer is: the last object that used it. For this a reference counting mechanism
is used. Whenever somebody copies a header of a Mat object a counter is increased for the matrix. Whenever a header
is cleaned this counter is decreased. When the counter reaches zero the matrix too is freed. Because, sometimes you
will still want to copy the matrix itself too, there exists the clone() or the copyTo() function.

1 Mat F = A.clone();
2 Mat G;
3 A.copyTo(G);

Now modifying F or G will not affect the matrix pointed by the Mat header. What you need to remember from all this
is that:

• Output image allocation for OpenCV functions is automatic (unless specified otherwise).

• No need to think about memory freeing with OpenCVs C++ interface.

• The assignment operator and the copy constructor (ctor)copies only the header.

• Use the clone() or the copyTo() function to copy the underlying matrix of an image.

Storing methods

This is about how you store the pixel values. You can select the color space and the data type used. The color space
refers to how we combine color components in order to code a given color. The simplest one is the gray scale. Here

50 Chapter 2. core module. The Core Functionality

http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-clone
http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-copyto
http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-clone
http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-copyto

The OpenCV Tutorials, Release 2.3

the colors at our disposal are black and white. The combination of these allows us to create many shades of gray.

For colorful ways we have a lot more of methods to choose from. However, every one of them breaks it down to
three or four basic components and the combination of this will give all others. The most popular one of this is RGB,
mainly because this is also how our eye builds up colors in our eyes. Its base colors are red, green and blue. To code
the transparency of a color sometimes a fourth element: alpha (A) is added.

However, they are many color systems each with their own advantages:

• RGB is the most common as our eyes use something similar, our display systems also compose colors using
these.

• The HSV and HLS decompose colors into their hue, saturation and value/luminance components, which is a
more natural way for us to describe colors. Using you may for example dismiss the last component, making
your algorithm less sensible to light conditions of the input image.

• YCrCb is used by the popular JPEG image format.

• CIE L*a*b* is a perceptually uniform color space, which comes handy if you need to measure the distance of a
given color to another color.

Now each of the building components has their own valid domains. This leads to the data type used. How we store
a component defines just how fine control we have over its domain. The smallest data type possible is char, which
means one byte or 8 bits. This may be signed (so can store values from 0 to 255) or unsigned (values from -127 to
+127). Although in case of three components this already gives 16 million possible colors to represent (like in case of
RGB) we may acquire an even finer control by using the float (4 byte = 32 bit) or double (8 byte = 64 bit) data types
for each component. Nevertheless, remember that increasing the size of a component also increases the size of the
whole picture in the memory.

Creating explicitly a Mat object

In the Load, Modify, and Save an Image tutorial you could already see how to write a matrix to an image file by
using the :readWriteImageVideo:‘ imwrite() <imwrite>‘ function. However, for debugging purposes it’s much more
convenient to see the actual values. You can achieve this via the << operator of Mat. However, be aware that this only
works for two dimensional matrices.

Although Mat is a great class as image container it is also a general matrix class. Therefore, it is possible to create and
manipulate multidimensional matrices. You can create a Mat object in multiple ways:

• Mat() Constructor

For two dimensional and multichannel images we first define their size: row and column count wise.

Then we need to specify the data type to use for storing the elements and the number of channels per
matrix point. To do this we have multiple definitions made according to the following convention:

CV_[The number of bits per item][Signed or Unsigned][Type Prefix]C[The channel number]

For instance, CV_8UC3 means we use unsigned char types that are 8 bit long and each pixel has three
items of this to form the three channels. This are predefined for up to four channel numbers. The Scalar
is four element short vector. Specify this and you can initialize all matrix points with a custom value.
However if you need more you can create the type with the upper macro and putting the channel number
in parenthesis as you can see below.

2.1. Mat - The Basic Image Container 51

http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-mat
http://opencv.itseez.com/modules/core/doc/basic_structures.html#scalar

The OpenCV Tutorials, Release 2.3

• Use C\C++ arrays and initialize via constructor

The upper example shows how to create a matrix with more than two dimensions. Specify its dimension, then
pass a pointer containing the size for each dimension and the rest remains the same.

• Create a header for an already existing IplImage pointer:

IplImage* img = cvLoadImage("greatwave.png", 1);
Mat mtx(img); // convert IplImage* -> Mat

• Create() function:

You cannot initialize the matrix values with this construction. It will only reallocate its matrix data
memory if the new size will not fit into the old one.

• MATLAB style initializer: zeros(), ones(), :eyes(). Specify size and data type to use:

• For small matrices you may use comma separated initializers:

• Create a new header for an existing Mat object and clone() or copyTo() it.

Print out formatting

Note: You can fill out a matrix with random values using the randu() function. You need to give the lover and upper
value between what you want the random values:

In the above examples you could see the default formatting option. Nevertheless, OpenCV allows you to format your
matrix output format to fit the rules of:

• Default

52 Chapter 2. core module. The Core Functionality

http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-create
http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-zeros
http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-ones
http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-eye
http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-clone
http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-copyto
http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html#randu

The OpenCV Tutorials, Release 2.3

• Python

• Comma separated values (CSV)

• Numpy

• C

Print for other common items

OpenCV offers support for print of other common OpenCV data structures too via the << operator like:

• 2D Point

• 3D Point

• std::vector via cv::Mat

• std::vector of points

2.1. Mat - The Basic Image Container 53

The OpenCV Tutorials, Release 2.3

Most of the samples here have been included into a small console application. You can download it from here or in
the core section of the cpp samples.

A quick video demonstration of this you can find on YouTube.

2.2 How to scan images, lookup tables and time measurement with
OpenCV

Goal

We’ll seek answers for the following questions:

• How to go through each and every pixel of an image?

• How is OpenCV matrix values stored?

• How to measure the performance of our algorithm?

• What are lookup tables and why use them?

Our test case

Let us consider a simple color reduction method. Using the unsigned char C and C++ type for matrix item storing a
channel of pixel may have up to 256 different values. For a three channel image this can allow the formation of way
too many colors (16 million to be exact). Working with so many color shades may give a heavy blow to our algorithm
performance. However, sometimes it is enough to work with a lot less of them to get the same final result.

In this cases it’s common that we make a color space reduction. This means that we divide the color space current
value with a new input value to end up with fewer colors. For instance every value between zero and nine takes the
new value zero, every value between ten and nineteen the value ten and so on.

When you divide an uchar (unsigned char - aka values between zero and 255) value with an int value the result will
be also char. These values may only be char values. Therefore, any fraction will be rounded down. Taking advantage
of this fact the upper operation in the uchar domain may be expressed as:

Inew = (
Iold

10
) ∗ 10

A simple color space reduction algorithm would consist of just passing through every pixel of an image matrix and
applying this formula. It’s worth noting that we do a divide and a multiplication operation. These operations are bloody
expensive for a system. If possible it’s worth avoiding them by using cheaper operations such as a few subtractions,
addition or in best case a simple assignment. Furthermore, note that we only have a limited number of input values for
the upper operation. In case of the uchar system this is 256 to be exact.

Therefore, for larger images it would be wise to calculate all possible values beforehand and during the assignment
just make the assignment, by using a lookup table. Lookup tables are simple arrays (having one or more dimensions)
that for a given input value variation holds the final output value. Its strength lies that we do not need to make the
calculation, we just need to read the result.

Our test case program (and the sample presented here) will do the following: read in a console line argument image
(that may be either color or gray scale - console line argument too) and apply the reduction with the given console
line argument integer value. In OpenCV, at the moment they are three major ways of going through an image pixel by

54 Chapter 2. core module. The Core Functionality

https://www.youtube.com/watch?v=1tibU7vGWpk

The OpenCV Tutorials, Release 2.3

pixel. To make things a little more interesting will make the scanning for each image using all of these methods, and
print out how long it took.

You can download the full source code here or look it up in the samples directory of OpenCV at the cpp tutorial code
for the core section. Its basic usage is:

how_to_scan_images imageName.jpg intValueToReduce [G]

The final argument is optional. If given the image will be loaded in gray scale format, otherwise the RGB color way
is used. The first thing is to calculate the lookup table.

Here we first use the C++ stringstream class to convert the third command line argument from text to an integer format.
Then we use a simple look and the upper formula to calculate the lookup table. No OpenCV specific stuff here.

Another issue is how do we measure time? Well OpenCV offers two simple functions to achieve this getTickCount()
and getTickFrequency(). The first returns the number of ticks of your systems CPU from a certain event (like since
you booted your system). The second returns how many times your CPU emits a tick during a second. So to measure
in seconds the number of time elapsed between two operations is easy as:

double t = (double)getTickCount();
// do something ...
t = ((double)getTickCount() - t)/getTickFrequency();
cout << "Times passed in seconds: " << t << endl;

How the image matrix is stored in the memory?

As you could already read in my Mat - The Basic Image Container tutorial the size of the matrix depends of the color
system used. More accurately, it depends from the number of channels used. In case of a gray scale image we have
something like:

Column 0 Column 1 Column ... Column m
Row 0 0,0 0,1 ... 0, m
Row 1 1,0 1,1 ... 1, m
Row,0 ...,1, m
Row n n,0 n,1 n,... n, m

For multichannel images the columns contain as many sub columns as the number of channels. For example in case
of an RGB color system:

Column 0 Column 1 Column ... Column m
Row 0 0,0 0,0 0,0 0,1 0,1 0,1 0, m 0, m 0, m
Row 1 1,0 1,0 1,0 1,1 1,1 1,1 1, m 1, m 1, m
Row,0 ...,0 ...,0 ...,1 ...,1 ...,1, m ..., m ..., m
Row n n,0 n,0 n,0 n,1 n,1 n,1 n,... n,... n,... n, m n, m n, m

Note that the order of the channels is inverse: BGR instead of RGB. Because in many cases the memory is large
enough to store the rows in a successive fashion the rows may follow one after another, creating a single long row.
Because everything is in a single place following one after another this may help to speed up the scanning process.
We can use the isContinuous() function to ask the matrix if this is the case. Continue on to the next section to find an
example.

The efficient way

When it comes to performance you cannot beat the classic C style operator[] (pointer) access. Therefore, the most
efficient method we can recommend for making the assignment is:

2.2. How to scan images, lookup tables and time measurement with OpenCV 55

http://opencv.itseez.com/modules/core/doc/utility_and_system_functions_and_macros.htmlgettickcount
http://opencv.itseez.com/modules/core/doc/utility_and_system_functions_and_macros.htmlgettickfrequency
http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-iscontinuous

The OpenCV Tutorials, Release 2.3

Here we basically just acquire a pointer to the start of each row and go through it until it ends. In the special case that
the matrix is stored in a continues manner we only need to request the pointer a single time and go all the way to the
end. We need to look out for color images: we have three channels so we need to pass through three times more items
in each row.

There’s another way of this. The data data member of a Mat object returns the pointer to the first row, first column. If
this pointer is null you have no valid input in that object. Checking this is the simplest method to check if your image
loading was a success. In case the storage is continues we can use this to go through the whole data pointer. In case of
a gray scale image this would look like:

uchar* p = I.data;

for(unsigned int i =0; i < ncol*nrows; ++i)

*p++ = table[*p];

You would get the same result. However, this code is a lot harder to read later on. It gets even harder if you have some
more advanced technique there. Moreover, in practice I’ve observed you’ll get the same performance result (as most
of the modern compilers will probably make this small optimization trick automatically for you).

The iterator (safe) method

In case of the efficient way making sure that you pass through the right amount of uchar fields and to skip the gaps that
may occur between the rows was your responsibility. The iterator method is considered a safer way as it takes over
these tasks from the user. All you need to do is ask the begin and the end of the image matrix and then just increase
the begin iterator until you reach the end. To acquire the value pointed by the iterator use the * operator (add it before
it).

In case of color images we have three uchar items per column. This may be considered a short vector of uchar items,
that has been baptized in OpenCV with the Vec3b name. To access the n-th sub column we use simple operator[]
access. It’s important to remember that OpenCV iterators go through the columns and automatically skip to the next
row. Therefore in case of color images if you use a simple uchar iterator you’ll be able to access only the blue channel
values.

Random Pixel Access

The final method isn’t recommended for scanning. It was made to acquire or modify random elements in the image.
Its basic usage is to specify the row and column number of the item you want to access. During our earlier scanning
methods you could already observe that is important through what type we are looking at the image. It’s no different
here as you need manually to specify what type to use at the automatic lookup. You can observe this in case of the
gray scale images for the following source code (the usage of the + at() function):

If you need to multiple lookups using this method for an image it may be troublesome and time consuming to enter
the type and the at keyword for each of the accesses. To solve this problem OpenCV has a Mat_ data type. It’s the
same as Mat with the extra need that at definition you need to specify the data type through what to look at the data
matrix, however in return you can use the operator() for fast access of items. To make things even better this is easily
convertible from and to the usual Mat data type. A sample usage of this you can see in case of the color images of the
upper function. Nevertheless, it’s important to note that the same operation (with the same runtime speed) could have
been done with the at() function. It’s just a less to write for the lazy programmer trick.

The Core Function

This is a bonus method of achieving lookup table modification in an image. Because in image processing it’s quite
common that you want to replace all of a given image value to some other value OpenCV has a function that makes

56 Chapter 2. core module. The Core Functionality

http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-at
http://opencv.itseez.com/modules/core/doc/basic_structures.html#id3
http://opencv.itseez.com/modules/core/doc/basic_structures.html#id3
http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-at

The OpenCV Tutorials, Release 2.3

the modification without the need from you to write the scanning of the image. We use the LUT() function of the core
module. First we build a Mat type of the lookup table:

Finally call the function (I is our input image and J the output one):

Performance Difference

For the best result compile the program and run it on your own speed. For showing off better the differences I’ve used
a quite large (2560 X 1600) image. The performance presented here are for color images. For a more accurate value
I’ve averaged the value I got from the call of the function for hundred times.

Efficient Way 79.4717 milliseconds
Iterator 83.7201 milliseconds
Random Access 93.7878 milliseconds
LUT function 32.5759 milliseconds

We can conclude a couple of things. If possible, use the already made functions of OpenCV (instead reinventing
these). The fastest method turns out to be the LUT function. This is because the OpenCV library is multi-thread
enabled via Intel Threaded Building Blocks. However, if you need to write a simple image scan prefer the pointer
method. The iterator is a safer bet, however quite slower. Using the random access method for full image scan is the
most costly. Your compiler might observe what you want to do and optimize it out somewhat, however in general case
this approach is with a little slower than the iterator method.

Finally, you may watch a sample run of the program on the video posted on our YouTube channel.

2.3 Adding (blending) two images using OpenCV

Goal

In this tutorial you will learn how to:

• What is linear blending and why it is useful.

• Add two images using addWeighted

Cool Theory

Note: The explanation below belongs to the book Computer Vision: Algorithms and Applications by Richard Szeliski

From our previous tutorial, we know already a bit of Pixel operators. An interesting dyadic (two-input) operator is the
linear blend operator:

g(x) = (1− α)f0(x) + αf1(x)

By varying α from 0→ 1 this operator can be used to perform a temporal cross-disolve between two images or videos,
as seen in slide shows and film production (cool, eh?)

Code

As usual, after the not-so-lengthy explanation, let’s go to the code. Here it is:

2.3. Adding (blending) two images using OpenCV 57

http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html#lut
https://www.youtube.com/watch?v=fB3AN5fjgwc
http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?highlight=addweighted#addWeighted
http://szeliski.org/Book/

The OpenCV Tutorials, Release 2.3

#include <cv.h>
#include <highgui.h>
#include <iostream>

using namespace cv;

int main(int argc, char** argv)
{
double alpha = 0.5; double beta; double input;

Mat src1, src2, dst;

/// Ask the user enter alpha
std::cout<<" Simple Linear Blender "<<std::endl;
std::cout<<"-----------------------"<<std::endl;
std::cout<<"* Enter alpha [0-1]: ";
std::cin>>input;

/// We use the alpha provided by the user iff it is between 0 and 1
if(alpha >= 0 && alpha <= 1)

{ alpha = input; }

/// Read image (same size, same type)
src1 = imread("../../images/LinuxLogo.jpg");
src2 = imread("../../images/WindowsLogo.jpg");

if(!src1.data) { printf("Error loading src1 \n"); return -1; }
if(!src2.data) { printf("Error loading src2 \n"); return -1; }

/// Create Windows
namedWindow("Linear Blend", 1);

beta = (1.0 - alpha);
addWeighted(src1, alpha, src2, beta, 0.0, dst);

imshow("Linear Blend", dst);

waitKey(0);
return 0;
}

Explanation

1. Since we are going to perform:

g(x) = (1− α)f0(x) + αf1(x)

We need two source images (f0(x) and f1(x)). So, we load them in the usual way:

src1 = imread("../../images/LinuxLogo.jpg");
src2 = imread("../../images/WindowsLogo.jpg");

Warning: Since we are adding src1 and src2, they both have to be of the same size (width and height) and
type.

2. Now we need to generate the g(x) image. For this, the function addWeighted comes quite handy:

58 Chapter 2. core module. The Core Functionality

http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?highlight=addweighted#addWeighted

The OpenCV Tutorials, Release 2.3

beta = (1.0 - alpha);
addWeighted(src1, alpha, src2, beta, 0.0, dst);

since addWeighted produces:

dst = α · src1+ β · src2+ γ

In this case, γ is the argument 0.0 in the code above.

3. Create windows, show the images and wait for the user to end the program.

Result

2.4 Changing the contrast and brightness of an image!

Goal

In this tutorial you will learn how to:

• Access pixel values

• Initialize a matrix with zeros

• Learn what saturate_cast does and why it is useful

• Get some cool info about pixel transformations

Cool Theory

Note: The explanation below belongs to the book Computer Vision: Algorithms and Applications by Richard Szeliski

Image Processing

• A general image processing operator is a function that takes one or more input images and produces an output
image.

2.4. Changing the contrast and brightness of an image! 59

http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?highlight=addweighted#addWeighted
http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?highlight=saturate_cast#saturate_cast
http://szeliski.org/Book/

The OpenCV Tutorials, Release 2.3

• Image transforms can be seen as:

– Point operators (pixel transforms)

– Neighborhood (area-based) operators

Pixel Transforms

• In this kind of image processing transform, each output pixel’s value depends on only the corresponding input
pixel value (plus, potentially, some globally collected information or parameters).

• Examples of such operators include brightness and contrast adjustments as well as color correction and trans-
formations.

Brightness and contrast adjustments

• Two commonly used point processes are multiplication and addition with a constant:

g(x) = αf(x) + β

• The parameters α > 0 and β are often called the gain and bias parameters; sometimes these parameters are said
to control contrast and brightness respectively.

• You can think of f(x) as the source image pixels and g(x) as the output image pixels. Then, more conveniently
we can write the expression as:

g(i, j) = α · f(i, j) + β

where i and j indicates that the pixel is located in the i-th row and j-th column.

Code

• The following code performs the operation g(i, j) = α · f(i, j) + β

• Here it is:

#include <cv.h>
#include <highgui.h>
#include <iostream>

using namespace cv;

double alpha; /**< Simple contrast control */
int beta; /**< Simple brightness control */

int main(int argc, char** argv)
{
/// Read image given by user
Mat image = imread(argv[1]);
Mat new_image = Mat::zeros(image.size(), image.type());

/// Initialize values
std::cout<<" Basic Linear Transforms "<<std::endl;
std::cout<<"-------------------------"<<std::endl;
std::cout<<"* Enter the alpha value [1.0-3.0]: ";std::cin>>alpha;
std::cout<<"* Enter the beta value [0-100]: "; std::cin>>beta;

60 Chapter 2. core module. The Core Functionality

The OpenCV Tutorials, Release 2.3

/// Do the operation new_image(i,j) = alpha*image(i,j) + beta
for(int y = 0; y < image.rows; y++)

{ for(int x = 0; x < image.cols; x++)
{ for(int c = 0; c < 3; c++)

{
new_image.at<Vec3b>(y,x)[c] =

saturate_cast<uchar>(alpha*(image.at<Vec3b>(y,x)[c]) + beta);
}

}
}

/// Create Windows
namedWindow("Original Image", 1);
namedWindow("New Image", 1);

/// Show stuff
imshow("Original Image", image);
imshow("New Image", new_image);

/// Wait until user press some key
waitKey();
return 0;
}

Explanation

1. We begin by creating parameters to save α and β to be entered by the user:

double alpha;
int beta;

2. We load an image using imread and save it in a Mat object:

Mat image = imread(argv[1]);

3. Now, since we will make some transformations to this image, we need a new Mat object to store it. Also, we
want this to have the following features:

• Initial pixel values equal to zero

• Same size and type as the original image

Mat new_image = Mat::zeros(image.size(), image.type());

We observe that Mat::zeros returns a Matlab-style zero initializer based on image.size() and image.type()

4. Now, to perform the operation g(i, j) = α · f(i, j) + β we will access to each pixel in image. Since we are
operating with RGB images, we will have three values per pixel (R, G and B), so we will also access them
separately. Here is the piece of code:

for(int y = 0; y < image.rows; y++)
{ for(int x = 0; x < image.cols; x++)

{ for(int c = 0; c < 3; c++)
{ new_image.at<Vec3b>(y,x)[c] =

saturate_cast<uchar>(alpha*(image.at<Vec3b>(y,x)[c]) + beta); }
}
}

Notice the following:

2.4. Changing the contrast and brightness of an image! 61

http://opencv.willowgarage.com/documentation/cpp/highgui_reading_and_writing_images_and_video.html?highlight=imread#imread
http://opencv.willowgarage.com/documentation/cpp/core_basic_structures.html?highlight=zeros#Mat::zeros

The OpenCV Tutorials, Release 2.3

• To access each pixel in the images we are using this syntax: image.at<Vec3b>(y,x)[c] where y is the row,
x is the column and c is R, G or B (0, 1 or 2).

• Since the operation α · p(i, j) + β can give values out of range or not integers (if α is float), we use
saturate_cast to make sure the values are valid.

5. Finally, we create windows and show the images, the usual way.

namedWindow("Original Image", 1);
namedWindow("New Image", 1);

imshow("Original Image", image);
imshow("New Image", new_image);

waitKey(0);

Note: Instead of using the for loops to access each pixel, we could have simply used this command:

image.convertTo(new_image, -1, alpha, beta);

where convertTo would effectively perform new_image = a*image + beta. However, we wanted to show you how to
access each pixel. In any case, both methods give the same result.

Result

• Running our code and using α = 2.2 and β = 50

$./BasicLinearTransforms lena.jpg
Basic Linear Transforms

* Enter the alpha value [1.0-3.0]: 2.2

* Enter the beta value [0-100]: 50

• We get this:

62 Chapter 2. core module. The Core Functionality

http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?highlight=saturate_cast#saturate_cast
http://opencv.willowgarage.com/documentation/cpp/core_basic_structures.html?#Mat::convertTo

The OpenCV Tutorials, Release 2.3

2.5 Basic Drawing

Goals

In this tutorial you will learn how to:

• Use Point to define 2D points in an image.

• Use Scalar and why it is useful

• Draw a line by using the OpenCV function line

• Draw an ellipse by using the OpenCV function ellipse

• Draw a rectangle by using the OpenCV function rectangle

• Draw a circle by using the OpenCV function circle

• Draw a filled polygon by using the OpenCV function fillPoly

OpenCV Theory

For this tutorial, we will heavily use two structures: Point and Scalar:

Point

It represents a 2D point, specified by its image coordinates x and y. We can define it as:

Point pt;
pt.x = 10;
pt.y = 8;

or

Point pt = Point(10, 8);

Scalar

• Represents a 4-element vector. The type Scalar is widely used in OpenCV for passing pixel values.

• In this tutorial, we will use it extensively to represent RGB color values (3 parameters). It is not necessary to
define the last argument if it is not going to be used.

• Let’s see an example, if we are asked for a color argument and we give:

Scalar(a, b, c)

We would be defining a RGB color such as: Red = c, Green = b and Blue = a

Code

• This code is in your OpenCV sample folder. Otherwise you can grab it from here

2.5. Basic Drawing 63

http://opencv.willowgarage.com/documentation/cpp/basic_structures.html?#point
http://opencv.willowgarage.com/documentation/cpp/core_basic_structures.html?#scalar
http://opencv.willowgarage.com/documentation/cpp/core_drawing_functions.html?#cv-line
http://opencv.willowgarage.com/documentation/cpp/core_drawing_functions.html?#cv-ellipse
http://opencv.willowgarage.com/documentation/cpp/core_drawing_functions.html?#cv-rectangle
http://opencv.willowgarage.com/documentation/cpp/core_drawing_functions.html?#cv-circle
http://opencv.willowgarage.com/documentation/cpp/core_drawing_functions.html?#cv-fillpoly
http://opencv.willowgarage.com/documentation/cpp/basic_structures.html?#point
http://opencv.willowgarage.com/documentation/cpp/core_basic_structures.html?#scalar
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/Basic/Drawing_1.cpp

The OpenCV Tutorials, Release 2.3

Explanation

1. Since we plan to draw two examples (an atom and a rook), we have to create 02 images and two windows to
display them.

/// Windows names
char atom_window[] = "Drawing 1: Atom";
char rook_window[] = "Drawing 2: Rook";

/// Create black empty images
Mat atom_image = Mat::zeros(w, w, CV_8UC3);
Mat rook_image = Mat::zeros(w, w, CV_8UC3);

2. We created functions to draw different geometric shapes. For instance, to draw the atom we used MyEllipse and
MyFilledCircle:

/// 1. Draw a simple atom:

/// 1.a. Creating ellipses
MyEllipse(atom_image, 90);
MyEllipse(atom_image, 0);
MyEllipse(atom_image, 45);
MyEllipse(atom_image, -45);

/// 1.b. Creating circles
MyFilledCircle(atom_image, Point(w/2.0, w/2.0));

3. And to draw the rook we employed MyLine, rectangle and a MyPolygon:

/// 2. Draw a rook

/// 2.a. Create a convex polygon
MyPolygon(rook_image);

/// 2.b. Creating rectangles
rectangle(rook_image,

Point(0, 7*w/8.0),
Point(w, w),
Scalar(0, 255, 255),
-1,
8);

/// 2.c. Create a few lines
MyLine(rook_image, Point(0, 15*w/16), Point(w, 15*w/16));
MyLine(rook_image, Point(w/4, 7*w/8), Point(w/4, w));
MyLine(rook_image, Point(w/2, 7*w/8), Point(w/2, w));
MyLine(rook_image, Point(3*w/4, 7*w/8), Point(3*w/4, w));

4. Let’s check what is inside each of these functions:

• MyLine

void MyLine(Mat img, Point start, Point end)
{

int thickness = 2;
int lineType = 8;
line(img,

start,
end,
Scalar(0, 0, 0),

64 Chapter 2. core module. The Core Functionality

The OpenCV Tutorials, Release 2.3

thickness,
lineType);

}

As we can see, MyLine just call the function line, which does the following:

– Draw a line from Point start to Point end

– The line is displayed in the image img

– The line color is defined by Scalar(0, 0, 0) which is the RGB value correspondent to Black

– The line thickness is set to thickness (in this case 2)

– The line is a 8-connected one (lineType = 8)

• MyEllipse

void MyEllipse(Mat img, double angle)
{

int thickness = 2;
int lineType = 8;

ellipse(img,
Point(w/2.0, w/2.0),
Size(w/4.0, w/16.0),
angle,
0,
360,
Scalar(255, 0, 0),
thickness,
lineType);

}

From the code above, we can observe that the function ellipse draws an ellipse such that:

– The ellipse is displayed in the image img

– The ellipse center is located in the point (w/2.0, w/2.0) and is enclosed in a box of size (w/4.0, w/16.0)

– The ellipse is rotated angle degrees

– The ellipse extends an arc between 0 and 360 degrees

– The color of the figure will be Scalar(255, 255, 0) which means blue in RGB value.

– The ellipse’s thickness is 2.

• MyFilledCircle

void MyFilledCircle(Mat img, Point center)
{
int thickness = -1;
int lineType = 8;

circle(img,
center,
w/32.0,
Scalar(0, 0, 255),
thickness,
lineType);

}

Similar to the ellipse function, we can observe that circle receives as arguments:

2.5. Basic Drawing 65

http://opencv.willowgarage.com/documentation/cpp/core_drawing_functions.html?#cv-line
http://opencv.willowgarage.com/documentation/cpp/core_drawing_functions.html?#cv-ellipse

The OpenCV Tutorials, Release 2.3

– The image where the circle will be displayed (img)

– The center of the circle denoted as the Point center

– The radius of the circle: w/32.0

– The color of the circle: Scalar(0, 0, 255) which means Red in RGB

– Since thickness = -1, the circle will be drawn filled.

• MyPolygon

void MyPolygon(Mat img)
{

int lineType = 8;

/** Create some points */
Point rook_points[1][20];
rook_points[0][0] = Point(w/4.0, 7*w/8.0);
rook_points[0][1] = Point(3*w/4.0, 7*w/8.0);
rook_points[0][2] = Point(3*w/4.0, 13*w/16.0);
rook_points[0][3] = Point(11*w/16.0, 13*w/16.0);
rook_points[0][4] = Point(19*w/32.0, 3*w/8.0);
rook_points[0][5] = Point(3*w/4.0, 3*w/8.0);
rook_points[0][6] = Point(3*w/4.0, w/8.0);
rook_points[0][7] = Point(26*w/40.0, w/8.0);
rook_points[0][8] = Point(26*w/40.0, w/4.0);
rook_points[0][9] = Point(22*w/40.0, w/4.0);
rook_points[0][10] = Point(22*w/40.0, w/8.0);
rook_points[0][11] = Point(18*w/40.0, w/8.0);
rook_points[0][12] = Point(18*w/40.0, w/4.0);
rook_points[0][13] = Point(14*w/40.0, w/4.0);
rook_points[0][14] = Point(14*w/40.0, w/8.0);
rook_points[0][15] = Point(w/4.0, w/8.0);
rook_points[0][16] = Point(w/4.0, 3*w/8.0);
rook_points[0][17] = Point(13*w/32.0, 3*w/8.0);
rook_points[0][18] = Point(5*w/16.0, 13*w/16.0);
rook_points[0][19] = Point(w/4.0, 13*w/16.0) ;

const Point* ppt[1] = { rook_points[0] };
int npt[] = { 20 };

fillPoly(img,
ppt,
npt,
1,
Scalar(255, 255, 255),
lineType);

}

To draw a filled polygon we use the function fillPoly. We note that:

– The polygon will be drawn on img

– The vertices of the polygon are the set of points in ppt

– The total number of vertices to be drawn are npt

– The number of polygons to be drawn is only 1

– The color of the polygon is defined by Scalar(255, 255, 255), which is the RGB value for white

• rectangle

66 Chapter 2. core module. The Core Functionality

http://opencv.willowgarage.com/documentation/cpp/core_drawing_functions.html?#cv-fillpoly

The OpenCV Tutorials, Release 2.3

rectangle(rook_image,
Point(0, 7*w/8.0),
Point(w, w),
Scalar(0, 255, 255),
-1,
8);

Finally we have the rectangle function (we did not create a special function for this guy). We note that:

– The rectangle will be drawn on rook_image

– Two opposite vertices of the rectangle are defined by ** Point(0, 7*w/8.0)** and Point(w, w)

– The color of the rectangle is given by Scalar(0, 255, 255) which is the RGB value for yellow

– Since the thickness value is given by -1, the rectangle will be filled.

Result

Compiling and running your program should give you a result like this:

2.6 Fancy Drawing!

Goals

In this tutorial you will learn how to:

• Use the Random Number generator class (RNG) and how to get a random number from a uniform distribution.

• Display Text on an OpenCV window by using the function putText

Code

• In the previous tutorial we drew diverse geometric figures, giving as input parameters such as coordinates (in the
form of Points), color, thickness, etc. You might have noticed that we gave specific values for these arguments.

2.6. Fancy Drawing! 67

http://opencv.willowgarage.com/documentation/cpp/core_drawing_functions.html?#cv-rectangle
http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?#rng
http://opencv.willowgarage.com/documentation/cpp/core_drawing_functions.html?#putText
http://opencv.willowgarage.com/documentation/cpp/basic_structures.html?#point

The OpenCV Tutorials, Release 2.3

• In this tutorial, we intend to use random values for the drawing parameters. Also, we intend to populate our
image with a big number of geometric figures. Since we will be initializing them in a random fashion, this
process will be automatic and made by using loops

• This code is in your OpenCV sample folder. Otherwise you can grab it from here

Explanation

1. Let’s start by checking out the main function. We observe that first thing we do is creating a Random Number
Generator object (RNG):

RNG rng(0xFFFFFFFF);

RNG implements a random number generator. In this example, rng is a RNG element initialized with the value
0xFFFFFFFF

2. Then we create a matrix initialized to zeros (which means that it will appear as black), specifying its height,
width and its type:

/// Initialize a matrix filled with zeros
Mat image = Mat::zeros(window_height, window_width, CV_8UC3);

/// Show it in a window during DELAY ms
imshow(window_name, image);

3. Then we proceed to draw crazy stuff. After taking a look at the code, you can see that it is mainly divided in 8
sections, defined as functions:

/// Now, let’s draw some lines
c = Drawing_Random_Lines(image, window_name, rng);
if(c != 0) return 0;

/// Go on drawing, this time nice rectangles
c = Drawing_Random_Rectangles(image, window_name, rng);
if(c != 0) return 0;

/// Draw some ellipses
c = Drawing_Random_Ellipses(image, window_name, rng);
if(c != 0) return 0;

/// Now some polylines
c = Drawing_Random_Polylines(image, window_name, rng);
if(c != 0) return 0;

/// Draw filled polygons
c = Drawing_Random_Filled_Polygons(image, window_name, rng);
if(c != 0) return 0;

/// Draw circles
c = Drawing_Random_Circles(image, window_name, rng);
if(c != 0) return 0;

/// Display text in random positions
c = Displaying_Random_Text(image, window_name, rng);
if(c != 0) return 0;

/// Displaying the big end!
c = Displaying_Big_End(image, window_name, rng);

68 Chapter 2. core module. The Core Functionality

https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/Basic/Drawing_2.cpp

The OpenCV Tutorials, Release 2.3

All of these functions follow the same pattern, so we will analyze only a couple of them, since the same expla-
nation applies for all.

4. Checking out the function Drawing_Random_Lines:

/**
* @function Drawing_Random_Lines

*/
int Drawing_Random_Lines(Mat image, char* window_name, RNG rng)
{

int lineType = 8;
Point pt1, pt2;

for(int i = 0; i < NUMBER; i++)
{
pt1.x = rng.uniform(x_1, x_2);
pt1.y = rng.uniform(y_1, y_2);
pt2.x = rng.uniform(x_1, x_2);
pt2.y = rng.uniform(y_1, y_2);

line(image, pt1, pt2, randomColor(rng), rng.uniform(1, 10), 8);
imshow(window_name, image);
if(waitKey(DELAY) >= 0)

{ return -1; }
}

return 0;
}

We can observe the following:

• The for loop will repeat NUMBER times. Since the function line is inside this loop, that means that
NUMBER lines will be generated.

• The line extremes are given by pt1 and pt2. For pt1 we can see that:

pt1.x = rng.uniform(x_1, x_2);
pt1.y = rng.uniform(y_1, y_2);

– We know that rng is a Random number generator object. In the code above we are calling
rng.uniform(a,b). This generates a radombly uniformed distribution between the values a and b
(inclusive in a, exclusive in b).

– From the explanation above, we deduce that the extremes pt1 and pt2 will be random values, so the
lines positions will be quite impredictable, giving a nice visual effect (check out the Result section
below).

– As another observation, we notice that in the line arguments, for the color input we enter:

randomColor(rng)

Let’s check the function implementation:

static Scalar randomColor(RNG& rng)
{
int icolor = (unsigned) rng;
return Scalar(icolor&255, (icolor>>8)&255, (icolor>>16)&255);

}

2.6. Fancy Drawing! 69

http://opencv.willowgarage.com/documentation/cpp/core_drawing_functions.html?#cv-line
http://opencv.willowgarage.com/documentation/cpp/core_drawing_functions.html?#cv-line

The OpenCV Tutorials, Release 2.3

As we can see, the return value is an Scalar with 3 randomly initialized values, which are used as the
R, G and B parameters for the line color. Hence, the color of the lines will be random too!

5. The explanation above applies for the other functions generating circles, ellipses, polygones, etc. The parameters
such as center and vertices are also generated randomly.

6. Before finishing, we also should take a look at the functions Display_Random_Text and Displaying_Big_End,
since they both have a few interesting features:

7. Display_Random_Text:

int Displaying_Random_Text(Mat image, char* window_name, RNG rng)
{

int lineType = 8;

for (int i = 1; i < NUMBER; i++)
{

Point org;
org.x = rng.uniform(x_1, x_2);
org.y = rng.uniform(y_1, y_2);

putText(image, "Testing text rendering", org, rng.uniform(0,8),
rng.uniform(0,100)*0.05+0.1, randomColor(rng), rng.uniform(1, 10), lineType);

imshow(window_name, image);
if(waitKey(DELAY) >= 0)

{ return -1; }
}

return 0;
}

Everything looks familiar but the expression:

putText(image, "Testing text rendering", org, rng.uniform(0,8),
rng.uniform(0,100)*0.05+0.1, randomColor(rng), rng.uniform(1, 10), lineType);

So, what does the function putText do? In our example:

• Draws the text “Testing text rendering” in image

• The bottom-left corner of the text will be located in the Point org

• The font type is a random integer value in the range: [0, 8 >.

• The scale of the font is denoted by the expression rng.uniform(0, 100)x0.05 + 0.1 (meaning its range is:
[0.1, 5.1 >)

• The text color is random (denoted by randomColor(rng))

• The text thickness ranges between 1 and 10, as specified by rng.uniform(1,10)

As a result, we will get (analagously to the other drawing functions) NUMBER texts over our image, in random
locations.

8. Displaying_Big_End

int Displaying_Big_End(Mat image, char* window_name, RNG rng)
{

Size textsize = getTextSize("OpenCV forever!", CV_FONT_HERSHEY_COMPLEX, 3, 5, 0);
Point org((window_width - textsize.width)/2, (window_height - textsize.height)/2);
int lineType = 8;

70 Chapter 2. core module. The Core Functionality

http://opencv.willowgarage.com/documentation/cpp/core_drawing_functions.html?#putText

The OpenCV Tutorials, Release 2.3

Mat image2;

for(int i = 0; i < 255; i += 2)
{

image2 = image - Scalar::all(i);
putText(image2, "OpenCV forever!", org, CV_FONT_HERSHEY_COMPLEX, 3,

Scalar(i, i, 255), 5, lineType);

imshow(window_name, image2);
if(waitKey(DELAY) >= 0)
{ return -1; }

}

return 0;
}

Besides the function getTextSize (which gets the size of the argument text), the new operation we can observe
is inside the foor loop:

image2 = image - Scalar::all(i)

So, image2 is the substraction of image and Scalar::all(i). In fact, what happens here is that every pixel of
image2 will be the result of substracting every pixel of image minus the value of i (remember that for each pixel
we are considering three values such as R, G and B, so each of them will be affected)

Also remember that the substraction operation always performs internally a saturate operation, which
means that the result obtained will always be inside the allowed range (no negative and between 0 and
255 for our example).

Result

As you just saw in the Code section, the program will sequentially execute diverse drawing functions, which will
produce:

1. First a random set of NUMBER lines will appear on screen such as it can be seen in this screenshot:

2. Then, a new set of figures, these time rectangles will follow.

3. Now some ellipses will appear, each of them with random position, size, thickness and arc length:

4. Now, polylines with 03 segments will appear on screen, again in random configurations.

5. Filled polygons (in this example triangles) will follow.

6. The last geometric figure to appear: circles!

2.6. Fancy Drawing! 71

The OpenCV Tutorials, Release 2.3

7. Near the end, the text “Testing Text Rendering” will appear in a variety of fonts, sizes, colors and positions.

8. And the big end (which by the way expresses a big truth too):

2.7 Mask operations on matrixes

Mask operations on matrixes are quite simple. The idea is that we recalculate each pixels value in an image according
to a matrix mask. This mask holds values that will just how much influence have neighbor pixel values (and the pixel
value itself) to the new pixel value. From a mathematical point of view we make a weighted average, with our specified
values.

Our test case

Let us consider the issue of an image contrast enchancement method. Basically we want to apply for every pixel of
the image the following formula:

I(i, j) = 5 ∗ I(i, j) − [I(i− 1, j) + I(i+ 1, j) + I(i, j− 1) + I(i, j+ 1)]

⇐⇒ I(i, j) ∗M,whereM =

i\
j −1 0 −1

−1 0 −1 0

0 −1 5 −1

+1 0 −1 0

The first notation is by using a formula, while the second is a compacted version of the first by using a mask. You use
the mask by puting the center of the mask matrix (in the upper case noted by the zero-zero index) on the pixel you
want to calculate and sum up the pixel values multiplicated with the overlapped matrix values. It’s the same thing,
however in case of large matrices the later notation is a lot easier to look over.

72 Chapter 2. core module. The Core Functionality

CHAPTER

THREE

IMGPROC MODULE. IMAGE
PROCESSING

In this section you will learn about the image processing (manipulation) functions inside OpenCV.

•

Title: Smoothing Images
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Let’s take a look at some basic linear filters!

•

Title: Eroding and Dilating
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Let’s change the shape of objects!

•

Title: More Morphology Transformations
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Here we investigate different morphology operators

•

Title: Image Pyramids
Compatibility: > OpenCV 2.0
Author: Ana Huamán
What if I need a bigger/smaller image?

73

The OpenCV Tutorials, Release 2.3

•

Title: Basic Thresholding Operations
Compatibility: > OpenCV 2.0
Author: Ana Huamán
After so much processing, it is time to decide which pixels stay!

•

Title: Making your own linear filters!
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn to design our own filters by using OpenCV functions

•

Title: Adding borders to your images
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to pad our images!

•

Title: Sobel Derivatives
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to calculate gradients and use them to detect edges!

•

Title: Laplace Operator
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn about the Laplace operator and how to detect edges with it.

•

Title: Canny Edge Detector
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn a sophisticated alternative to detect edges.

74 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

•

Title: Hough Line Transform
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to detect lines

•

Title: Hough Circle Transform
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to detect circles

•

Title: Remapping
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to manipulate pixels locations

•

Title: Affine Transformations
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to rotate, translate and scale our images

•

Title: Histogram Equalization
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to improve the contrast in our images

•

Title: Histogram Calculation
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to create and generate histograms

75

The OpenCV Tutorials, Release 2.3

•

Title: Histogram Comparison
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn to calculate metrics between histograms

•

Title: Back Projection
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to use histograms to find similar objects in images

•

Title: Template Matching
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to match templates in an image

•

Title: Finding contours in your image
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to find contours of objects in our image

•

Title: Convex Hull
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to get hull contours and draw them!

•

Title: Creating Bounding boxes and circles for contours
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to obtain bounding boxes and circles for our contours.

76 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

•

Title: Creating Bounding rotated boxes and ellipses for contours
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to obtain rotated bounding boxes and ellipses for our
contours.

•

Title: Image Moments
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn to calculate the moments of an image

•

Title: Point Polygon Test
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to calculate distances from the image to contours

77

The OpenCV Tutorials, Release 2.3

3.1 Smoothing Images

Goal

In this tutorial you will learn how to apply diverse linear filters to smooth images using OpenCV functions such as:

• blur

• GaussianBlur

• medianBlur

• bilateralFilter

Theory

Note: The explanation below belongs to the book Computer Vision: Algorithms and Applications by Richard Szeliski
and to LearningOpenCV

• Smoothing, also called blurring, is a simple and frequently used image processing operation.

• There are many reasons for smoothing. In this tutorial we will focus on smoothing in order to reduce noise
(other uses will be seen in the following tutorials).

• To perform a smoothing operation we will apply a filter to our image. The most common type of filters are
linear, in which an output pixel’s value (i.e. g(i, j)) is determined as a weighted sum of input pixel values (i.e.
f(i+ k, j+ l)) :

g(i, j) =
∑
k,l

f(i+ k, j+ l)h(k, l)

h(k, l) is called the kernel, which is nothing more than the coefficients of the filter.

It helps to visualize a filter as a window of coefficients sliding across the image.

• There are many kind of filters, here we will mention the most used:

Normalized Box Filter

• This filter is the simplest of all! Each output pixel is the mean of its kernel neighbors (all of them contribute
with equal weights)

• The kernel is below:

K =
1

Kwidth · Kheight

1 1 1 ... 1

1 1 1 ... 1

. 1

. 1

1 1 1 ... 1

78 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-blur
http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-gaussianblur
http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-medianblur
http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-bilateralfilter
http://szeliski.org/Book/

The OpenCV Tutorials, Release 2.3

Gaussian Filter

• Probably the most useful filter (although not the fastest). Gaussian filtering is done by convolving each point in
the input array with a Gaussian kernel and then summing them all to produce the output array.

• Just to make the picture clearer, remember how a 1D Gaussian kernel look like?

Assuming that an image is 1D, you can notice that the pixel located in the middle would have the biggest weight.
The weight of its neighbors decreases as the spatial distance between them and the center pixel increases.

Note: Remember that a 2D Gaussian can be represented as :

G0(x, y) = Ae

−(x− µx)
2

2σ2x
+

−(y− µy)
2

2σ2y

where µ is the mean (the peak) and σ represents the variance (per each of the variables x and y)

Median Filter

The median filter run through each element of the signal (in this case the image) and replace each pixel with the
median of its neighboring pixels (located in a square neighborhood around the evaluated pixel).

Bilateral Filter

• So far, we have explained some filters which main goal is to smooth an input image. However, sometimes the
filters do not only dissolve the noise, but also smooth away the edges. To avoid this (at certain extent at least),
we can use a bilateral filter.

• In an analogous way as the Gaussian filter, the bilateral filter also considers the neighboring pixels with weights
assigned to each of them. These weights have two components, the first of which is the same weighting used by
the Gaussian filter. The second component takes into account the difference in intensity between the neighboring
pixels and the evaluated one.

• For a more detailed explanation you can check this link

3.1. Smoothing Images 79

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html

The OpenCV Tutorials, Release 2.3

Code

• What does this program do?

– Loads an image

– Applies 4 different kinds of filters (explained in Theory) and show the filtered images sequentially

• Downloadable code: Click here

• Code at glance:

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"

using namespace std;
using namespace cv;

/// Global Variables
int DELAY_CAPTION = 1500;
int DELAY_BLUR = 100;
int MAX_KERNEL_LENGTH = 31;

Mat src; Mat dst;
char window_name[] = "Filter Demo 1";

/// Function headers
int display_caption(char* caption);
int display_dst(int delay);

/**
* function main

*/
int main(int argc, char** argv)
{

namedWindow(window_name, CV_WINDOW_AUTOSIZE);

/// Load the source image
src = imread("../images/lena.jpg", 1);

if(display_caption("Original Image") != 0) { return 0; }

dst = src.clone();
if(display_dst(DELAY_CAPTION) != 0) { return 0; }

/// Applying Homogeneous blur
if(display_caption("Homogeneous Blur") != 0) { return 0; }

for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2)
{ blur(src, dst, Size(i, i), Point(-1,-1));

if(display_dst(DELAY_BLUR) != 0) { return 0; } }

/// Applying Gaussian blur
if(display_caption("Gaussian Blur") != 0) { return 0; }

for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2)
{ GaussianBlur(src, dst, Size(i, i), 0, 0);

if(display_dst(DELAY_BLUR) != 0) { return 0; } }

/// Applying Median blur

80 Chapter 3. imgproc module. Image Processing

https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgProc/Smoothing.cpp

The OpenCV Tutorials, Release 2.3

if(display_caption("Median Blur") != 0) { return 0; }

for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2)
{ medianBlur (src, dst, i);

if(display_dst(DELAY_BLUR) != 0) { return 0; } }

/// Applying Bilateral Filter
if(display_caption("Bilateral Blur") != 0) { return 0; }

for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2)
{ bilateralFilter (src, dst, i, i*2, i/2);
if(display_dst(DELAY_BLUR) != 0) { return 0; } }

/// Wait until user press a key
display_caption("End: Press a key!");

waitKey(0);
return 0;

}

int display_caption(char* caption)
{

dst = Mat::zeros(src.size(), src.type());
putText(dst, caption,

Point(src.cols/4, src.rows/2),
CV_FONT_HERSHEY_COMPLEX, 1, Scalar(255, 255, 255));

imshow(window_name, dst);
int c = waitKey(DELAY_CAPTION);
if(c >= 0) { return -1; }
return 0;

}

int display_dst(int delay)
{

imshow(window_name, dst);
int c = waitKey (delay);
if(c >= 0) { return -1; }
return 0;

}

Explanation

1. Let’s check the OpenCV functions that involve only the smoothing procedure, since the rest is already known
by now.

2. Normalized Block Filter:

OpenCV offers the function blur to perform smoothing with this filter.

for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2)
{ blur(src, dst, Size(i, i), Point(-1,-1));

if(display_dst(DELAY_BLUR) != 0) { return 0; } }

We specify 4 arguments (more details, check the Reference):

• src: Source image

3.1. Smoothing Images 81

http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-blur

The OpenCV Tutorials, Release 2.3

• dst: Destination image

• Size(w,h): Defines the size of the kernel to be used (of width w pixels and height h pixels)

• Point(-1, -1): Indicates where the anchor point (the pixel evaluated) is located with respect to the neigh-
borhood. If there is a negative value, then the center of the kernel is considered the anchor point.

3. Gaussian Filter:

It is performed by the function GaussianBlur :

for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2)
{ GaussianBlur(src, dst, Size(i, i), 0, 0);

if(display_dst(DELAY_BLUR) != 0) { return 0; } }

Here we use 4 arguments (more details, check the OpenCV reference):

• src: Source image

• dst: Destination image

• Size(w, h): The size of the kernel to be used (the neighbors to be considered). w and h have to be odd and
positive numbers otherwise thi size will be calculated using the σx and σy arguments.

• σx: The standard deviation in x. Writing 0 implies that σx is calculated using kernel size.

• σy: The standard deviation in y. Writing 0 implies that σy is calculated using kernel size.

4. Median Filter:

This filter is provided by the medianBlur function:

for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2)
{ medianBlur (src, dst, i);

if(display_dst(DELAY_BLUR) != 0) { return 0; } }

We use three arguments:

• src: Source image

• dst: Destination image, must be the same type as src

• i: Size of the kernel (only one because we use a square window). Must be odd.

5. Bilateral Filter

Provided by OpenCV function bilateralFilter

for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2)
{ bilateralFilter (src, dst, i, i*2, i/2);
if(display_dst(DELAY_BLUR) != 0) { return 0; } }

We use 5 arguments:

• src: Source image

• dst: Destination image

• d: The diameter of each pixel neighborhood.

• σColor: Standard deviation in the color space.

• σSpace: Standard deviation in the coordinate space (in pixel terms)

82 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-gaussianblur
http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-medianblur
http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-bilateralfilter

The OpenCV Tutorials, Release 2.3

Results

• The code opens an image (in this case lena.jpg) and display it under the effects of the 4 filters explained.

• Here is a snapshot of the image smoothed using medianBlur:

3.2 Eroding and Dilating

Goal

In this tutorial you will learn how to:

• Apply two very common morphology operators: Dilation and Erosion. For this purpose, you will use the
following OpenCV functions:

– erode

– dilate

Cool Theory

Note: The explanation below belongs to the book Learning OpenCV by Bradski and Kaehler.

3.2. Eroding and Dilating 83

http://opencv.jp/opencv-2.2_org/cpp/imgproc_image_filtering.html#cv-erode
http://opencv.jp/opencv-2.2_org/cpp/imgproc_image_filtering.html#cv-dilate

The OpenCV Tutorials, Release 2.3

Morphological Operations

• In short: A set of operations that process images based on shapes. Morphological operations apply a structuring
element to an input image and generate an output image.

• The most basic morphological operations are two: Erosion and Dilation. They have a wide array of uses, i.e. :

– Removing noise

– Isolation of individual elements and joining disparate elements in an image.

– Finding of intensity bumps or holes in an image

• We will explain dilation and erosion briefly, using the following image as an example:

Dilation

• This operations consists of convoluting an image A with some kernel (B), which can have any shape or size,
usually a square or circle.

• The kernel B has a defined anchor point, usually being the center of the kernel.

• As the kernel B is scanned over the image, we compute the maximal pixel value overlapped by B and replace the
image pixel in the anchor point position with that maximal value. As you can deduce, this maximizing operation
causes bright regions within an image to “grow” (therefore the name dilation). Take as an example the image
above. Applying dilation we can get:

The background (bright) dilates around the black regions of the letter.

84 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

Erosion

• This operation is the sister of dilation. What this does is to compute a local minimum over the area of the kernel.

• As the kernel B is scanned over the image, we compute the minimal pixel value overlapped by B and replace
the image pixel under the anchor point with that minimal value.

• Analagously to the example for dilation, we can apply the erosion operator to the original image (shown above).
You can see in the result below that the bright areas of the image (the background, apparently), get thinner,
whereas the dark zones (the “writing”(gets bigger.

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "highgui.h"
#include <stdlib.h>
#include <stdio.h>

using namespace cv;

/// Global variables
Mat src, erosion_dst, dilation_dst;

int erosion_elem = 0;
int erosion_size = 0;
int dilation_elem = 0;
int dilation_size = 0;
int const max_elem = 2;
int const max_kernel_size = 21;

/** Function Headers */
void Erosion(int, void*);
void Dilation(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Load an image
src = imread(argv[1]);

3.2. Eroding and Dilating 85

https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/Image_Processing/Morphology_1.cpp

The OpenCV Tutorials, Release 2.3

if(!src.data)
{ return -1; }

/// Create windows
namedWindow("Erosion Demo", CV_WINDOW_AUTOSIZE);
namedWindow("Dilation Demo", CV_WINDOW_AUTOSIZE);
cvMoveWindow("Dilation Demo", src.cols, 0);

/// Create Erosion Trackbar
createTrackbar("Element:\n 0: Rect \n 1: Cross \n 2: Ellipse", "Erosion Demo",

&erosion_elem, max_elem,
Erosion);

createTrackbar("Kernel size:\n 2n +1", "Erosion Demo",
&erosion_size, max_kernel_size,
Erosion);

/// Create Dilation Trackbar
createTrackbar("Element:\n 0: Rect \n 1: Cross \n 2: Ellipse", "Dilation Demo",

&dilation_elem, max_elem,
Dilation);

createTrackbar("Kernel size:\n 2n +1", "Dilation Demo",
&dilation_size, max_kernel_size,
Dilation);

/// Default start
Erosion(0, 0);
Dilation(0, 0);

waitKey(0);
return 0;

}

/** @function Erosion */
void Erosion(int, void*)
{

int erosion_type;
if(erosion_elem == 0){ erosion_type = MORPH_RECT; }
else if(erosion_elem == 1){ erosion_type = MORPH_CROSS; }
else if(erosion_elem == 2) { erosion_type = MORPH_ELLIPSE; }

Mat element = getStructuringElement(erosion_type,
Size(2*erosion_size + 1, 2*erosion_size+1),
Point(erosion_size, erosion_size));

/// Apply the erosion operation
erode(src, erosion_dst, element);
imshow("Erosion Demo", erosion_dst);

}

/** @function Dilation */
void Dilation(int, void*)
{

int dilation_type;
if(dilation_elem == 0){ dilation_type = MORPH_RECT; }
else if(dilation_elem == 1){ dilation_type = MORPH_CROSS; }
else if(dilation_elem == 2) { dilation_type = MORPH_ELLIPSE; }

86 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

Mat element = getStructuringElement(dilation_type,
Size(2*dilation_size + 1, 2*dilation_size+1),
Point(dilation_size, dilation_size));

/// Apply the dilation operation
dilate(src, dilation_dst, element);
imshow("Dilation Demo", dilation_dst);

}

Explanation

1. Most of the stuff shown is known by you (if you have any doubt, please refer to the tutorials in previous sections).
Let’s check the general structure of the program:

• Load an image (can be RGB or grayscale)

• Create two windows (one for dilation output, the other for erosion)

• Create a set of 02 Trackbars for each operation:

– The first trackbar “Element” returns either erosion_elem or dilation_elem

– The second trackbar “Kernel size” return erosion_size or dilation_size for the corresponding opera-
tion.

• Every time we move any slider, the user’s function Erosion or Dilation will be called and it will update
the output image based on the current trackbar values.

Let’s analyze these two functions:

2. erosion:

/** @function Erosion */
void Erosion(int, void*)
{

int erosion_type;
if(erosion_elem == 0){ erosion_type = MORPH_RECT; }
else if(erosion_elem == 1){ erosion_type = MORPH_CROSS; }
else if(erosion_elem == 2) { erosion_type = MORPH_ELLIPSE; }

Mat element = getStructuringElement(erosion_type,
Size(2*erosion_size + 1, 2*erosion_size+1),
Point(erosion_size, erosion_size));

/// Apply the erosion operation
erode(src, erosion_dst, element);
imshow("Erosion Demo", erosion_dst);

}

• The function that performs the erosion operation is erode. As we can see, it receives three arguments:

– src: The source image

– erosion_dst: The output image

– element: This is the kernel we will use to perform the operation. If we do not specify, the default
is a simple 3x3 matrix. Otherwise, we can specify its shape. For this, we need to use the function
getStructuringElement:

Mat element = getStructuringElement(erosion_type,
Size(2*erosion_size + 1, 2*erosion_size+1),
Point(erosion_size, erosion_size));

3.2. Eroding and Dilating 87

http://opencv.jp/opencv-2.2_org/cpp/imgproc_image_filtering.html#cv-erode
http://opencv.jp/opencv-2.2_org/cpp/imgproc_image_filtering.html#cv-getstructuringelement

The OpenCV Tutorials, Release 2.3

We can choose any of three shapes for our kernel:

* Rectangular box: MORPH_RECT

* Cross: MORPH_CROSS

* Ellipse: MORPH_ELLIPSE

Then, we just have to specify the size of our kernel and the anchor point. If not specified, it
is assumed to be in the center.

• That is all. We are ready to perform the erosion of our image.

Note: Additionally, there is another parameter that allows you to perform multiple erosions (iterations) at once.
We are not using it in this simple tutorial, though. You can check out the Reference for more details.

3. dilation:

The code is below. As you can see, it is completely similar to the snippet of code for erosion. Here we also have the
option of defining our kernel, its anchor point and the size of the operator to be used.

/** @function Dilation */
void Dilation(int, void*)
{

int dilation_type;
if(dilation_elem == 0){ dilation_type = MORPH_RECT; }
else if(dilation_elem == 1){ dilation_type = MORPH_CROSS; }
else if(dilation_elem == 2) { dilation_type = MORPH_ELLIPSE; }

Mat element = getStructuringElement(dilation_type,
Size(2*dilation_size + 1, 2*dilation_size+1),
Point(dilation_size, dilation_size));

/// Apply the dilation operation
dilate(src, dilation_dst, element);
imshow("Dilation Demo", dilation_dst);

}

Results

• Compile the code above and execute it with an image as argument. For instance, using this image:

88 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

We get the results below. Varying the indices in the Trackbars give different output images, naturally. Try them
out! You can even try to add a third Trackbar to control the number of iterations.

3.3 More Morphology Transformations

Goal

In this tutorial you will learn how to:

• Use the OpenCV function morphologyEx to apply Morphological Transformation such as:

– Opening

– Closing

3.3. More Morphology Transformations 89

http://opencv.jp/opencv-2.2_org/cpp/imgproc_image_filtering.html?highlight=morphology#morphologyEx

The OpenCV Tutorials, Release 2.3

– Morphological Gradient

– Top Hat

– Black Hat

Cool Theory

Note: The explanation below belongs to the book Learning OpenCV by Bradski and Kaehler.

In the previous tutorial we covered two basic Morphology operations:

• Erosion

• Dilation.

Based on these two we can effectuate more sophisticated transformations to our images. Here we discuss briefly 05
operations offered by OpenCV:

Opening

• It is obtained by the erosion of an image followed by a dilation.

dst = open(src, element) = dilate(erode(src, element))

• Useful for removing small objects (it is assumed that the objects are bright on a dark foreground)

• For instance, check out the example below. The image at the left is the original and the image at the right is
the result after applying the opening transformation. We can observe that the small spaces in the corners of the
letter tend to dissapear.

Closing

• It is obtained by the dilation of an image followed by an erosion.

dst = close(src, element) = erode(dilate(src, element))

• Useful to remove small holes (dark regions).

90 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

Morphological Gradient

• It is the difference between the dilation and the erosion of an image.

dst = morphgrad(src, element) = dilate(src, element) − erode(src, element)

• It is useful for finding the outline of an object as can be seen below:

Top Hat

• It is the difference between an input image and its opening.

dst = tophat(src, element) = src− open(src, element)

3.3. More Morphology Transformations 91

The OpenCV Tutorials, Release 2.3

Black Hat

• It is the difference between the closing and its input image

dst = blackhat(src, element) = close(src, element) − src

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>

using namespace cv;

/// Global variables
Mat src, dst;

int morph_elem = 0;
int morph_size = 0;
int morph_operator = 0;
int const max_operator = 4;
int const max_elem = 2;
int const max_kernel_size = 21;

char* window_name = "Morphology Transformations Demo";

/** Function Headers */
void Morphology_Operations(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Load an image
src = imread(argv[1]);

if(!src.data)
{ return -1; }

/// Create window
namedWindow(window_name, CV_WINDOW_AUTOSIZE);

92 Chapter 3. imgproc module. Image Processing

https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgProc/Morphology_2.cpp

The OpenCV Tutorials, Release 2.3

/// Create Trackbar to select Morphology operation
createTrackbar("Operator:\n 0: Opening - 1: Closing \n 2: Gradient - 3: Top Hat \n 4: Black Hat", window_name, &morph_operator, max_operator, Morphology_Operations);

/// Create Trackbar to select kernel type
createTrackbar("Element:\n 0: Rect - 1: Cross - 2: Ellipse", window_name,

&morph_elem, max_elem,
Morphology_Operations);

/// Create Trackbar to choose kernel size
createTrackbar("Kernel size:\n 2n +1", window_name,

&morph_size, max_kernel_size,
Morphology_Operations);

/// Default start
Morphology_Operations(0, 0);

waitKey(0);
return 0;
}

/**
* @function Morphology_Operations

*/
void Morphology_Operations(int, void*)
{

// Since MORPH_X : 2,3,4,5 and 6
int operation = morph_operator + 2;

Mat element = getStructuringElement(morph_elem, Size(2*morph_size + 1, 2*morph_size+1), Point(morph_size, morph_size));

/// Apply the specified morphology operation
morphologyEx(src, dst, operation, element);
imshow(window_name, dst);
}

Explanation

1. Let’s check the general structure of the program:

• Load an image

• Create a window to display results of the Morphological operations

• Create 03 Trackbars for the user to enter parameters:

– The first trackbar “Operator” returns the kind of morphology operation to use (morph_operator).

createTrackbar("Operator:\n 0: Opening - 1: Closing \n 2: Gradient - 3: Top Hat \n 4: Black Hat",
window_name, &morph_operator, max_operator,
Morphology_Operations);

– The second trackbar “Element” returns morph_elem, which indicates what kind of structure our
kernel is:

createTrackbar("Element:\n 0: Rect - 1: Cross - 2: Ellipse", window_name,
&morph_elem, max_elem,
Morphology_Operations);

3.3. More Morphology Transformations 93

The OpenCV Tutorials, Release 2.3

– The final trackbar “Kernel Size” returns the size of the kernel to be used (morph_size)

createTrackbar("Kernel size:\n 2n +1", window_name,
&morph_size, max_kernel_size,
Morphology_Operations);

• Every time we move any slider, the user’s function Morphology_Operations will be called to effectuate
a new morphology operation and it will update the output image based on the current trackbar values.

/**
* @function Morphology_Operations

*/
void Morphology_Operations(int, void*)
{

// Since MORPH_X : 2,3,4,5 and 6
int operation = morph_operator + 2;

Mat element = getStructuringElement(morph_elem, Size(2*morph_size + 1, 2*morph_size+1), Point(morph_size, morph_size));

/// Apply the specified morphology operation
morphologyEx(src, dst, operation, element);
imshow(window_name, dst);
}

We can observe that the key function to perform the morphology transformations is morphologyEx. In this
example we use four arguments (leaving the rest as defaults):

– src : Source (input) image

– dst: Output image

– operation: The kind of morphology transformation to be performed. Note that we have 5 alternatives:

* Opening: MORPH_OPEN : 2

* Closing: MORPH_CLOSE: 3

* Gradient: MORPH_GRADIENT: 4

* Top Hat: MORPH_TOPHAT: 5

* Black Hat: MORPH_BLACKHAT: 6

As you can see the values range from <2-6>, that is why we add (+2) to the values entered by the
Trackbar:

int operation = morph_operator + 2;

– element: The kernel to be used. We use the function getStructuringElement to define our own struc-
ture.

Results

• After compiling the code above we can execute it giving an image path as an argument. For this tutorial we use
as input the image: baboon.png:

94 Chapter 3. imgproc module. Image Processing

http://opencv.jp/opencv-2.2_org/cpp/imgproc_image_filtering.html?highlight=morphology#morphologyEx
http://opencv.jp/opencv-2.2_org/cpp/imgproc_image_filtering.html#cv-getstructuringelement

The OpenCV Tutorials, Release 2.3

• And here are two snapshots of the display window. The first picture shows the output after using the operator
Opening with a cross kernel. The second picture (right side, shows the result of using a Blackhat operator with
an ellipse kernel.

3.4 Image Pyramids

Goal

In this tutorial you will learn how to:

• Use the OpenCV functions pyrUp and pyrDown to downsample or upsample a given image.

Theory

Note: The explanation below belongs to the book Learning OpenCV by Bradski and Kaehler.

• Usually we need to convert an image to a size different than its original. For this, there are two possible options:

– Upsize the image (zoom in) or

– Downsize it (zoom out).

• Although there is a geometric transformation function in OpenCV that -literally- resize an image (resize, which
we will show in a future tutorial), in this section we analyze first the use of Image Pyramids, which are widely
applied in a huge range of vision applications.

3.4. Image Pyramids 95

http://opencv.willowgarage.com/documentation/cpp/imgproc_image_filtering.html#cv-pyrup
http://opencv.willowgarage.com/documentation/cpp/imgproc_image_filtering.html#cv-pyrdown
http://opencv.willowgarage.com/documentation/cpp/imgproc_geometric_image_transformations.html#cv-resize

The OpenCV Tutorials, Release 2.3

Image Pyramid

• An image pyramid is a collection of images - all arising from a single original image - that are successively
downsampled until some desired stopping point is reached.

• There are two common kinds of image pyramids:

– Gaussian pyramid: Used to downsample images

– Laplacian pyramid: Used to reconstruct an upsampled image from an image lower in the pyramid (with
less resolution)

• In this tutorial we’ll use the Gaussian pyramid.

Gaussian Pyramid

• Imagine the pyramid as a set of layers in which the higher the layer, the smaller the size.

• Every layer is numbered from bottom to top, so layer (i+ 1) (denoted as Gi+1 is smaller than layer i (Gi).

• To produce layer (i+ 1) in the Gaussian pyramid, we do the following:

– Convolve Gi with a Gaussian kernel:

1

16

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

– Remove every even-numbered row and column.

• You can easily notice that the resulting image will be exactly one-quarter the area of its predecessor. Iterating
this process on the input image G0 (original image) produces the entire pyramid.

• The procedure above was useful to downsample an image. What if we want to make it bigger?:

– First, upsize the image to twice the original in each dimension, wit the new even rows and columns filled
with zeros (0)

– Perform a convolution with the same kernel shown above (multiplied by 4) to approximate the values of
the “missing pixels”

96 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

• These two procedures (downsampling and upsampling as explained above) are implemented by the OpenCV
functions pyrUp and pyrDown, as we will see in an example with the code below:

Note: When we reduce the size of an image, we are actually losing information of the image.

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <math.h>
#include <stdlib.h>
#include <stdio.h>

using namespace cv;

/// Global variables
Mat src, dst, tmp;
char* window_name = "Pyramids Demo";

/**
* @function main

*/
int main(int argc, char** argv)
{

/// General instructions
printf("\n Zoom In-Out demo \n ");
printf("------------------ \n");
printf(" * [u] -> Zoom in \n");
printf(" * [d] -> Zoom out \n");
printf(" * [ESC] -> Close program \n \n");

/// Test image - Make sure it s divisible by 2^{n}
src = imread("../images/chicky_512.jpg");
if(!src.data)

{ printf(" No data! -- Exiting the program \n");
return -1; }

tmp = src;
dst = tmp;

/// Create window
namedWindow(window_name, CV_WINDOW_AUTOSIZE);
imshow(window_name, dst);

/// Loop
while(true)
{

int c;
c = waitKey(10);

if((char)c == 27)
{ break; }

if((char)c == ’u’)

3.4. Image Pyramids 97

http://opencv.willowgarage.com/documentation/cpp/imgproc_image_filtering.html#cv-pyrup
http://opencv.willowgarage.com/documentation/cpp/imgproc_image_filtering.html#cv-pyrdown
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgProc/Pyramids.cpp

The OpenCV Tutorials, Release 2.3

{ pyrUp(tmp, dst, Size(tmp.cols*2, tmp.rows*2));
printf("** Zoom In: Image x 2 \n");

}
else if((char)c == ’d’)
{ pyrDown(tmp, dst, Size(tmp.cols/2, tmp.rows/2));

printf("** Zoom Out: Image / 2 \n");
}

imshow(window_name, dst);
tmp = dst;

}
return 0;

}

Explanation

1. Let’s check the general structure of the program:

• Load an image (in this case it is defined in the program, the user does not have to enter it as an argument)

/// Test image - Make sure it s divisible by 2^{n}
src = imread("../images/chicky_512.jpg");
if(!src.data)

{ printf(" No data! -- Exiting the program \n");
return -1; }

• Create a Mat object to store the result of the operations (dst) and one to save temporal results (tmp).

Mat src, dst, tmp;
/* ... */
tmp = src;
dst = tmp;

• Create a window to display the result

namedWindow(window_name, CV_WINDOW_AUTOSIZE);
imshow(window_name, dst);

• Perform an infinite loop waiting for user input.

while(true)
{

int c;
c = waitKey(10);

if((char)c == 27)
{ break; }

if((char)c == ’u’)
{ pyrUp(tmp, dst, Size(tmp.cols*2, tmp.rows*2));

printf("** Zoom In: Image x 2 \n");
}

else if((char)c == ’d’)
{ pyrDown(tmp, dst, Size(tmp.cols/2, tmp.rows/2));
printf("** Zoom Out: Image / 2 \n");

}

imshow(window_name, dst);

98 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

tmp = dst;
}

Our program exits if the user presses ESC. Besides, it has two options:

– Perform upsampling (after pressing ‘u’)

pyrUp(tmp, dst, Size(tmp.cols*2, tmp.rows*2)

We use the function pyrUp with 03 arguments:

* tmp: The current image, it is initialized with the src original image.

* dst: The destination image (to be shown on screen, supposedly the double of the input image)

* Size(tmp.cols*2, tmp.rows*2) : The destination size. Since we are upsampling, pyrUp expects a
size double than the input image (in this case tmp).

– Perform downsampling (after pressing ‘d’)

pyrDown(tmp, dst, Size(tmp.cols/2, tmp.rows/2)

Similarly as with pyrUp, we use the function pyrDown with 03 arguments:

* tmp: The current image, it is initialized with the src original image.

* dst: The destination image (to be shown on screen, supposedly half the input image)

* Size(tmp.cols/2, tmp.rows/2) : The destination size. Since we are upsampling, pyrDown expects
half the size the input image (in this case tmp).

– Notice that it is important that the input image can be divided by a factor of two (in both dimensions).
Otherwise, an error will be shown.

– Finally, we update the input image tmp with the current image displayed, so the subsequent operations
are performed on it.

tmp = dst;

Results

• After compiling the code above we can test it. The program calls an image chicky_512.jpg that comes in the
tutorial_code/image folder. Notice that this image is 512× 512, hence a downsample won’t generate any error
(512 = 29). The original image is shown below:

3.4. Image Pyramids 99

http://opencv.willowgarage.com/documentation/cpp/imgproc_image_filtering.html#cv-pyrup
http://opencv.willowgarage.com/documentation/cpp/imgproc_image_filtering.html#cv-pyrup
http://opencv.willowgarage.com/documentation/cpp/imgproc_image_filtering.html#cv-pyrup
http://opencv.willowgarage.com/documentation/cpp/imgproc_image_filtering.html#cv-pyrdown
http://opencv.willowgarage.com/documentation/cpp/imgproc_image_filtering.html#cv-pyrdown

The OpenCV Tutorials, Release 2.3

• First we apply two successive pyrDown operations by pressing ‘d’. Our output is:

• Note that we should have lost some resolution due to the fact that we are diminishing the size of the image. This
is evident after we apply pyrUp twice (by pressing ‘u’). Our output is now:

100 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/imgproc_image_filtering.html#cv-pyrdown
http://opencv.willowgarage.com/documentation/cpp/imgproc_image_filtering.html#cv-pyrup

The OpenCV Tutorials, Release 2.3

3.5 Basic Thresholding Operations

Goal

In this tutorial you will learn how to:

• Perform basic thresholding operations using OpenCV function threshold

Cool Theory

Note: The explanation below belongs to the book Learning OpenCV by Bradski and Kaehler.

What is Thresholding?

• The simplest segmentation method

• Application example: Separate out regions of an image corresponding to objects which we want to analyze.
This separation is based on the variation of intensity between the object pixels and the background pixels.

• To differentiate the pixels we are interested in from the rest (which will eventually be rejected), we perform a
comparison of each pixel intensity value with respect to a threshold (determined according to the problem to
solve).

3.5. Basic Thresholding Operations 101

http://opencv.willowgarage.com/documentation/cpp/miscellaneous_image_transformations.html#cv-threshold

The OpenCV Tutorials, Release 2.3

• Once we have separated properly the important pixels, we can set them with a determined value to identify them
(i.e. we can assign them a value of 0 (black), 255 (white) or any value that suits your needs).

Types of Thresholding

• OpenCV offers the function threshold to perform thresholding operations.

• We can effectuate 5 types of Thresholding operations with this function. We will explain them in the following
subsections.

• To illustrate how these thresholding processes work, let’s consider that we have a source image with pixels with
intensity values src(x, y). The plot below depicts this. The horizontal blue line represents the threshold thresh
(fixed).

Threshold Binary

• This thresholding operation can be expressed as:

dst(x, y) =

{
maxVal if src(x, y) > thresh
0 otherwise

• So, if the intensity of the pixel src(x, y) is higher than thresh, then the new pixel intensity is set to aMaxVal.
Otherwise, the pixels are set to 0.

102 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/miscellaneous_image_transformations.html#cv-threshold

The OpenCV Tutorials, Release 2.3

Threshold Binary, Inverted

• This thresholding operation can be expressed as:

dst(x, y) =

{
0 if src(x, y) > thresh
maxVal otherwise

• If the intensity of the pixel src(x, y) is higher than thresh, then the new pixel intensity is set to a 0. Otherwise,
it is set toMaxVal.

Truncate

• This thresholding operation can be expressed as:

dst(x, y) =

{
threshold if src(x, y) > thresh
src(x, y) otherwise

• The maximum intensity value for the pixels is thresh, if src(x, y) is greater, then its value is truncated. See
figure below:

3.5. Basic Thresholding Operations 103

The OpenCV Tutorials, Release 2.3

Threshold to Zero

• This operation can be expressed as:

dst(x, y) =

{
src(x, y) if src(x, y) > thresh
0 otherwise

• If src(x, y) is lower than thresh, the new pixel value will be set to 0.

Threshold to Zero, Inverted

• This operation can be expressed as:

dst(x, y) =

{
0 if src(x, y) > thresh
src(x, y) otherwise

• If src(x, y) is greater than thresh, the new pixel value will be set to 0.

Code

The tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>

using namespace cv;

/// Global variables

104 Chapter 3. imgproc module. Image Processing

https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgProc/Threshold.cpp

The OpenCV Tutorials, Release 2.3

int threshold_value = 0;
int threshold_type = 3;;
int const max_value = 255;
int const max_type = 4;
int const max_BINARY_value = 255;

Mat src, src_gray, dst;
char* window_name = "Threshold Demo";

char* trackbar_type = "Type: \n 0: Binary \n 1: Binary Inverted \n 2: Truncate \n 3: To Zero \n 4: To Zero Inverted";
char* trackbar_value = "Value";

/// Function headers
void Threshold_Demo(int, void*);

/**
* @function main

*/
int main(int argc, char** argv)
{

/// Load an image
src = imread(argv[1], 1);

/// Convert the image to Gray
cvtColor(src, src_gray, CV_RGB2GRAY);

/// Create a window to display results
namedWindow(window_name, CV_WINDOW_AUTOSIZE);

/// Create Trackbar to choose type of Threshold
createTrackbar(trackbar_type,

window_name, &threshold_type,
max_type, Threshold_Demo);

createTrackbar(trackbar_value,
window_name, &threshold_value,
max_value, Threshold_Demo);

/// Call the function to initialize
Threshold_Demo(0, 0);

/// Wait until user finishes program
while(true)
{

int c;
c = waitKey(20);
if((char)c == 27)
{ break; }

}

}

/**
* @function Threshold_Demo

*/
void Threshold_Demo(int, void*)
{

3.5. Basic Thresholding Operations 105

The OpenCV Tutorials, Release 2.3

/* 0: Binary
1: Binary Inverted
2: Threshold Truncated
3: Threshold to Zero
4: Threshold to Zero Inverted

*/

threshold(src_gray, dst, threshold_value, max_BINARY_value,threshold_type);

imshow(window_name, dst);
}

Explanation

1. Let’s check the general structure of the program:

• Load an image. If it is RGB we convert it to Grayscale. For this, remember that we can use the function
cvtColor:

src = imread(argv[1], 1);

/// Convert the image to Gray
cvtColor(src, src_gray, CV_RGB2GRAY);

• Create a window to display the result

namedWindow(window_name, CV_WINDOW_AUTOSIZE);

• Create 2 trackbars for the user to enter user input:

– Type of thresholding: Binary, To Zero, etc...

– Threshold value

createTrackbar(trackbar_type,
window_name, &threshold_type,
max_type, Threshold_Demo);

createTrackbar(trackbar_value,
window_name, &threshold_value,
max_value, Threshold_Demo);

• Wait until the user enters the threshold value, the type of thresholding (or until the program exits)

• Whenever the user changes the value of any of the Trackbars, the function Threshold_Demo is called:

/**
* @function Threshold_Demo

*/
void Threshold_Demo(int, void*)
{

/* 0: Binary
1: Binary Inverted
2: Threshold Truncated
3: Threshold to Zero
4: Threshold to Zero Inverted

*/

threshold(src_gray, dst, threshold_value, max_BINARY_value,threshold_type);

106 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/imgproc_miscellaneous_image_transformations.html#cv-cvtcolor

The OpenCV Tutorials, Release 2.3

imshow(window_name, dst);
}

As you can see, the function threshold is invoked. We give 5 parameters:

– src_gray: Our input image

– dst: Destination (output) image

– threshold_value: The thresh value with respect to which the thresholding operation is made

– max_BINARY_value: The value used with the Binary thresholding operations (to set the chosen pixels)

– threshold_type: One of the 5 thresholding operations. They are listed in the comment section of the
function above.

Results

1. After compiling this program, run it giving a path to an image as argument. For instance, for an input image as:

2. First, we try to threshold our image with a binary threhold inverted. We expect that the pixels brighter than the
thresh will turn dark, which is what actually happens, as we can see in the snapshot below (notice from the
original image, that the doggie’s tongue and eyes are particularly bright in comparison with the image, this is
reflected in the output image).

3.5. Basic Thresholding Operations 107

http://opencv.willowgarage.com/documentation/cpp/miscellaneous_image_transformations.html#cv-threshold

The OpenCV Tutorials, Release 2.3

3. Now we try with the threshold to zero. With this, we expect that the darkest pixels (below the threshold) will
become completely black, whereas the pixels with value greater than the threshold will keep its original value.
This is verified by the following snapshot of the output image:

108 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

3.6 Making your own linear filters!

Goal

In this tutorial you will learn how to:

• Use the OpenCV function filter2D to create your own linear filters.

Theory

Note: The explanation below belongs to the book Learning OpenCV by Bradski and Kaehler.

Convolution

In a very general sense, convolution is an operation between every part of an image and an operator (kernel).

What is a kernel?

A kernel is essentially a fixed size array of numerical coefficeints along with an anchor point in that array, which is
tipically located at the center.

3.6. Making your own linear filters! 109

http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-filter2d

The OpenCV Tutorials, Release 2.3

How does convolution with a kernel work?

Assume you want to know the resulting value of a particular location in the image. The value of the convolution is
calculated in the following way:

1. Place the kernel anchor on top of a determined pixel, with the rest of the kernel overlaying the corresponding
local pixels in the image.

2. Multiply the kernel coefficients by the corresponding image pixel values and sum the result.

3. Place the result to the location of the anchor in the input image.

4. Repeat the process for all pixels by scanning the kernel over the entire image.

Expressing the procedure above in the form of an equation we would have:

H(x, y) =

Mi−1∑
i=0

Mj−1∑
j=0

I(x+ i− ai, y+ j− aj)K(i, j)

Fortunately, OpenCV provides you with the function filter2D so you do not have to code all these operations.

Code

1. What does this program do?

• Loads an image

• Performs a normalized box filter. For instance, for a kernel of size size = 3, the kernel would be:

K =
1

3 · 3

1 1 1

1 1 1

1 1 1

The program will perform the filter operation with kernels of sizes 3, 5, 7, 9 and 11.

• The filter output (with each kernel) will be shown during 500 milliseconds

2. The tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>

110 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-filter2d
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/filter2D_demo.cpp

The OpenCV Tutorials, Release 2.3

using namespace cv;

/** @function main */
int main (int argc, char** argv)
{

/// Declare variables
Mat src, dst;

Mat kernel;
Point anchor;
double delta;
int ddepth;
int kernel_size;
char* window_name = "filter2D Demo";

int c;

/// Load an image
src = imread(argv[1]);

if(!src.data)
{ return -1; }

/// Create window
namedWindow(window_name, CV_WINDOW_AUTOSIZE);

/// Initialize arguments for the filter
anchor = Point(-1, -1);
delta = 0;
ddepth = -1;

/// Loop - Will filter the image with different kernel sizes each 0.5 seconds
int ind = 0;
while(true)
{

c = waitKey(500);
/// Press ’ESC’ to exit the program
if((char)c == 27)
{ break; }

/// Update kernel size for a normalized box filter
kernel_size = 3 + 2*(ind%5);
kernel = Mat::ones(kernel_size, kernel_size, CV_32F)/ (float)(kernel_size*kernel_size);

/// Apply filter
filter2D(src, dst, ddepth , kernel, anchor, delta, BORDER_DEFAULT);
imshow(window_name, dst);
ind++;

}

return 0;
}

Explanation

1. Load an image

3.6. Making your own linear filters! 111

The OpenCV Tutorials, Release 2.3

src = imread(argv[1]);

if(!src.data)
{ return -1; }

2. Create a window to display the result

namedWindow(window_name, CV_WINDOW_AUTOSIZE);

3. Initialize the arguments for the linear filter

anchor = Point(-1, -1);
delta = 0;
ddepth = -1;

4. Perform an infinite loop updating the kernel size and applying our linear filter to the input image. Let’s analyze
that more in detail:

5. First we define the kernel our filter is going to use. Here it is:

kernel_size = 3 + 2*(ind%5);
kernel = Mat::ones(kernel_size, kernel_size, CV_32F)/ (float)(kernel_size*kernel_size);

The first line is to update the kernel_size to odd values in the range: [3, 11]. The second line actually builds the
kernel by setting its value to a matrix filled with 1 ′s and normalizing it by dividing it between the number of
elements.

6. After setting the kernel, we can generate the filter by using the function filter2D:

filter2D(src, dst, ddepth , kernel, anchor, delta, BORDER_DEFAULT);

The arguments denote:

(a) src: Source image

(b) dst: Destination image

(c) ddepth: The depth of dst. A negative value (such as −1) indicates that the depth is the same as the source.

(d) kernel: The kernel to be scanned through the image

(e) anchor: The position of the anchor relative to its kernel. The location Point(-1, -1) indicates the center by
default.

(f) delta: A value to be added to each pixel during the convolution. By default it is 0

(g) BORDER_DEFAULT: We let this value by default (more details in the following tutorial)

7. Our program will effectuate a while loop, each 500 ms the kernel size of our filter will be updated in the range
indicated.

Results

1. After compiling the code above, you can execute it giving as argument the path of an image. The result should
be a window that shows an image blurred by a normalized filter. Each 0.5 seconds the kernel size should change,
as can be seen in the series of snapshots below:

112 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-filter2d

The OpenCV Tutorials, Release 2.3

3.7 Adding borders to your images

Goal

In this tutorial you will learn how to:

1. Use the OpenCV function copyMakeBorder to set the borders (extra padding to your image).

Theory

Note: The explanation below belongs to the book Learning OpenCV by Bradski and Kaehler.

1. In our previous tutorial we learned to use convolution to operate on images. One problem that naturally arises is
how to handle the boundaries. How can we convolve them if the evaluated points are at the edge of the image?

2. What most of OpenCV functions do is to copy a given image onto another slightly larger image and then
automatically pads the boundary (by any of the methods explained in the sample code just below). This way,
the convolution can be performed over the needed pixels without problems (the extra padding is cut after the
operation is done).

3. In this tutorial, we will briefly explore two ways of defining the extra padding (border) for an image:

(a) BORDER_CONSTANT: Pad the image with a constant value (i.e. black or 0

(b) BORDER_REPLICATE: The row or column at the very edge of the original is replicated to the extra
border.

This will be seen more clearly in the Code section.

Code

1. What does this program do?

• Load an image

• Let the user choose what kind of padding use in the input image. There are two options:

(a) Constant value border: Applies a padding of a constant value for the whole border. This value will be
updated randomly each 0.5 seconds.

(b) Replicated border: The border will be replicated from the pixel values at the edges of the original
image.

3.7. Adding borders to your images 113

http://opencv.willowgarage.com/documentation/cpp/imgproc_image_filtering.html?#copyMakeBorder

The OpenCV Tutorials, Release 2.3

The user chooses either option by pressing ‘c’ (constant) or ‘r’ (replicate)

• The program finishes when the user presses ‘ESC’

2. The tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>

using namespace cv;

/// Global Variables
Mat src, dst;
int top, bottom, left, right;
int borderType;
Scalar value;
char* window_name = "copyMakeBorder Demo";
RNG rng(12345);

/** @function main */
int main(int argc, char** argv)
{

int c;

/// Load an image
src = imread(argv[1]);

if(!src.data)
{ return -1;
printf(" No data entered, please enter the path to an image file \n");

}

/// Brief how-to for this program
printf("\n \t copyMakeBorder Demo: \n");
printf("\t -------------------- \n");
printf(" ** Press ’c’ to set the border to a random constant value \n");
printf(" ** Press ’r’ to set the border to be replicated \n");
printf(" ** Press ’ESC’ to exit the program \n");

/// Create window
namedWindow(window_name, CV_WINDOW_AUTOSIZE);

/// Initialize arguments for the filter
top = (int) (0.05*src.rows); bottom = (int) (0.05*src.rows);
left = (int) (0.05*src.cols); right = (int) (0.05*src.cols);
dst = src;

imshow(window_name, dst);

while(true)
{

c = waitKey(500);

if((char)c == 27)
{ break; }

else if((char)c == ’c’)
{ borderType = BORDER_CONSTANT; }

114 Chapter 3. imgproc module. Image Processing

https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/copyMakeBorder_demo.cpp

The OpenCV Tutorials, Release 2.3

else if((char)c == ’r’)
{ borderType = BORDER_REPLICATE; }

value = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
copyMakeBorder(src, dst, top, bottom, left, right, borderType, value);

imshow(window_name, dst);
}

return 0;
}

Explanation

1. First we declare the variables we are going to use:

Mat src, dst;
int top, bottom, left, right;
int borderType;
Scalar value;
char* window_name = "copyMakeBorder Demo";
RNG rng(12345);

Especial attention deserves the variable rng which is a random number generator. We use it to generate the
random border color, as we will see soon.

2. As usual we load our source image src:

src = imread(argv[1]);

if(!src.data)
{ return -1;
printf(" No data entered, please enter the path to an image file \n");

}

3. After giving a short intro of how to use the program, we create a window:

namedWindow(window_name, CV_WINDOW_AUTOSIZE);

4. Now we initialize the argument that defines the size of the borders (top, bottom, left and right). We give them a
value of 5% the size of src.

top = (int) (0.05*src.rows); bottom = (int) (0.05*src.rows);
left = (int) (0.05*src.cols); right = (int) (0.05*src.cols);

5. The program begins a while loop. If the user presses ‘c’ or ‘r’, the borderType variable takes the value of
BORDER_CONSTANT or BORDER_REPLICATE respectively:

while(true)
{

c = waitKey(500);

if((char)c == 27)
{ break; }

else if((char)c == ’c’)
{ borderType = BORDER_CONSTANT; }

else if((char)c == ’r’)
{ borderType = BORDER_REPLICATE; }

3.7. Adding borders to your images 115

The OpenCV Tutorials, Release 2.3

6. In each iteration (after 0.5 seconds), the variable value is updated...

value = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));

with a random value generated by the RNG variable rng. This value is a number picked randomly in the range
[0, 255]

7. Finally, we call the function copyMakeBorder to apply the respective padding:

copyMakeBorder(src, dst, top, bottom, left, right, borderType, value);

The arguments are:

(a) src: Source image

(b) dst: Destination image

(c) top, bottom, left, right: Length in pixels of the borders at each side of the image. We define them as being
5% of the original size of the image.

(d) borderType: Define what type of border is applied. It can be constant or replicate for this example.

(e) value: If borderType is BORDER_CONSTANT, this is the value used to fill the border pixels.

8. We display our output image in the image created previously

imshow(window_name, dst);

Results

1. After compiling the code above, you can execute it giving as argument the path of an image. The result should
be:

• By default, it begins with the border set to BORDER_CONSTANT. Hence, a succession of random colored
borders will be shown.

• If you press ‘r’, the border will become a replica of the edge pixels.

• If you press ‘c’, the random colored borders will appear again

• If you press ‘ESC’ the program will exit.

Below some screenshot showing how the border changes color and how the BORDER_REPLICATE option
looks:

116 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/imgproc_image_filtering.html?#copyMakeBorder

The OpenCV Tutorials, Release 2.3

3.8 Sobel Derivatives

Goal

In this tutorial you will learn how to:

1. Use the OpenCV function Sobel to calculate the derivatives from an image.

2. Use the OpenCV function Scharr to calculate a more accurate derivative for a kernel of size 3 · 3

Theory

Note: The explanation below belongs to the book Learning OpenCV by Bradski and Kaehler.

1. In the last two tutorials we have seen applicative examples of convolutions. One of the most important convolu-
tions is the computation of derivatives in an image (or an approximation to them).

2. Why may be important the calculus of the derivatives in an image? Let’s imagine we want to detect the edges
present in the image. For instance:

3.8. Sobel Derivatives 117

http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-sobel
http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-scharr

The OpenCV Tutorials, Release 2.3

You can easily notice that in an edge, the pixel intensity changes in a notorious way. A good way to express
changes is by using derivatives. A high change in gradient indicates a major change in the image.

3. To be more graphical, let’s assume we have a 1D-image. An edge is shown by the “jump” in intensity in the plot
below:

4. The edge “jump” can be seen more easily if we take the first derivative (actually, here appears as a maximum)

118 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

5. So, from the explanation above, we can deduce that a method to detect edges in an image can be performed by
locating pixel locations where the gradient is higher than its neighbors (or to generalize, higher than a threshold).

6. More detailed explanation, please refer to Learning OpenCV by Bradski and Kaehler

Sobel Operator

1. The Sobel Operator is a discrete differentiation operator. It computes an approximation of the gradient of an
image intensity function.

2. The Sobel Operator combines Gaussian smoothing and differentiation.

Formulation

Assuming that the image to be operated is I:

1. We calculate two derivatives:

(a) Horizontal changes: This is computed by convolving I with a kernel Gx with odd size. For example for
a kernel size of 3, Gx would be computed as:

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 ∗ I
(b) Vertical changes: This is computed by convolving I with a kernel Gy with odd size. For example for a

kernel size of 3, Gy would be computed as:

Gy =

−1 −2 −1
0 0 0

+1 +2 +1

 ∗ I
2. At each point of the image we calculate an approximation of the gradient in that point by combining both results

above:

3.8. Sobel Derivatives 119

The OpenCV Tutorials, Release 2.3

G =
√
G2x +G2y

Although sometimes the following simpler equation is used:

G = |Gx| + |Gy|

Note:

When the size of the kernel is 3, the Sobel kernel shown above may produce noticeable inaccuracies (after
all, Sobel is only an approximation of the derivative). OpenCV addresses this inaccuracy for kernels of
size 3 by using the Scharr function. This is as fast but more accurate than the standar Sobel function. It
implements the following kernels:

Gx =

 −3 0 +3
−10 0 +10
−3 0 +3

Gy =

−3 −10 −3
0 0 0

+3 +10 +3

You can check out more information of this function in the OpenCV reference (Scharr). Also, in the sample code
below, you will notice that above the code for Sobel function there is also code for the Scharr function commented.
Uncommenting it (and obviously commenting the Sobel stuff) should give you an idea of how this function works.

Code

1. What does this program do?

• Applies the Sobel Operator and generates as output an image with the detected edges bright on a darker
background.

2. The tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>

using namespace cv;

/** @function main */
int main(int argc, char** argv)
{

Mat src, src_gray;
Mat grad;
char* window_name = "Sobel Demo - Simple Edge Detector";
int scale = 1;
int delta = 0;
int ddepth = CV_16S;

120 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-scharr
http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-scharr
http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-sobel
http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-scharr
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp

The OpenCV Tutorials, Release 2.3

int c;

/// Load an image
src = imread(argv[1]);

if(!src.data)
{ return -1; }

GaussianBlur(src, src, Size(3,3), 0, 0, BORDER_DEFAULT);

/// Convert it to gray
cvtColor(src, src_gray, CV_RGB2GRAY);

/// Create window
namedWindow(window_name, CV_WINDOW_AUTOSIZE);

/// Generate grad_x and grad_y
Mat grad_x, grad_y;
Mat abs_grad_x, abs_grad_y;

/// Gradient X
//Scharr(src_gray, grad_x, ddepth, 1, 0, scale, delta, BORDER_DEFAULT);
Sobel(src_gray, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT);
convertScaleAbs(grad_x, abs_grad_x);

/// Gradient Y
//Scharr(src_gray, grad_y, ddepth, 0, 1, scale, delta, BORDER_DEFAULT);
Sobel(src_gray, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT);
convertScaleAbs(grad_y, abs_grad_y);

/// Total Gradient (approximate)
addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad);

imshow(window_name, grad);

waitKey(0);

return 0;
}

Explanation

1. First we declare the variables we are going to use:

Mat src, src_gray;
Mat grad;
char* window_name = "Sobel Demo - Simple Edge Detector";
int scale = 1;
int delta = 0;
int ddepth = CV_16S;

2. As usual we load our source image src:

src = imread(argv[1]);

if(!src.data)
{ return -1; }

3.8. Sobel Derivatives 121

The OpenCV Tutorials, Release 2.3

3. First, we apply a GaussianBlur to our image to reduce the noise (kernel size = 3)

GaussianBlur(src, src, Size(3,3), 0, 0, BORDER_DEFAULT);

4. Now we convert our filtered image to grayscale:

cvtColor(src, src_gray, CV_RGB2GRAY);

5. Second, we calculate the “derivatives” in x and y directions. For this, we use the function Sobel as shown below:

Mat grad_x, grad_y;
Mat abs_grad_x, abs_grad_y;

/// Gradient X
Sobel(src_gray, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT);
/// Gradient Y
Sobel(src_gray, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT);

The function takes the following arguments:

• src_gray: In our example, the input image. Here it is CV_8U

• grad_x/grad_y: The output image.

• ddepth: The depth of the output image. We set it to CV_16S to avoid overflow.

• x_order: The order of the derivative in x direction.

• y_order: The order of the derivative in y direction.

• scale, delta and BORDER_DEFAULT: We use default values.

Notice that to calculate the gradient in x direction we use: xorder = 1 and yorder = 0. We do analogously for
the y direction.

6. We convert our partial results back to CV_8U:

convertScaleAbs(grad_x, abs_grad_x);
convertScaleAbs(grad_y, abs_grad_y);

7. Finally, we try to approximate the gradient by adding both directional gradients (note that this is not an exact
calculation at all! but it is good for our purposes).

addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad);

8. Finally, we show our result:

imshow(window_name, grad);

Results

1. Here is the output of applying our basic detector to lena.jpg:

122 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-gaussianblur
http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-sobel

The OpenCV Tutorials, Release 2.3

3.9 Laplace Operator

Goal

In this tutorial you will learn how to:

1. Use the OpenCV function Laplacian to implement a discrete analog of the Laplacian operator.

Theory

1. In the previous tutorial we learned how to use the Sobel Operator. It was based on the fact that in the edge area,
the pixel intensity shows a “jump” or a high variation of intensity. Getting the first derivative of the intensity,
we observed that an edge is characterized by a maximum, as it can be seen in the figure:

3.9. Laplace Operator 123

http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-laplacian

The OpenCV Tutorials, Release 2.3

2. And...what happens if we take the second derivative?

You can observe that the second derivative is zero! So, we can also use this criterion to attempt to detect edges in
an image. However, note that zeros will not only appear in edges (they can actually appear in other meaningless
locations); this can be solved by applying filtering where needed.

Laplacian Operator

1. From the explanation above, we deduce that the second derivative can be used to detect edges. Since images are
“2D”, we would need to take the derivative in both dimensions. Here, the Laplacian operator comes handy.

2. The Laplacian operator is defined by:

Laplace(f) =
∂2f

∂x2
+
∂2f

∂y2

1. The Laplacian operator is implemented in OpenCV by the function Laplacian. In fact, since the Laplacian uses
the gradient of images, it calls internally the Sobel operator to perform its computation.

124 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/image_filtering.html#cv-laplacian

The OpenCV Tutorials, Release 2.3

Code

1. What does this program do?

• Loads an image

• Remove noise by applying a Gaussian blur and then convert the original image to grayscale

• Applies a Laplacian operator to the grayscale image and stores the output image

• Display the result in a window

2. The tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>

using namespace cv;

/** @function main */
int main(int argc, char** argv)
{

Mat src, src_gray, dst;
int kernel_size = 3;
int scale = 1;
int delta = 0;
int ddepth = CV_16S;
char* window_name = "Laplace Demo";

int c;

/// Load an image
src = imread(argv[1]);

if(!src.data)
{ return -1; }

/// Remove noise by blurring with a Gaussian filter
GaussianBlur(src, src, Size(3,3), 0, 0, BORDER_DEFAULT);

/// Convert the image to grayscale
cvtColor(src, src_gray, CV_RGB2GRAY);

/// Create window
namedWindow(window_name, CV_WINDOW_AUTOSIZE);

/// Apply Laplace function
Mat abs_dst;

Laplacian(src_gray, dst, ddepth, kernel_size, scale, delta, BORDER_DEFAULT);
convertScaleAbs(dst, abs_dst);

/// Show what you got
imshow(window_name, abs_dst);

waitKey(0);

return 0;

3.9. Laplace Operator 125

https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/Laplace_Demo.cpp

The OpenCV Tutorials, Release 2.3

}

Explanation

1. Create some needed variables:

Mat src, src_gray, dst;
int kernel_size = 3;
int scale = 1;
int delta = 0;
int ddepth = CV_16S;
char* window_name = "Laplace Demo";

2. Loads the source image:

src = imread(argv[1]);

if(!src.data)
{ return -1; }

3. Apply a Gaussian blur to reduce noise:

GaussianBlur(src, src, Size(3,3), 0, 0, BORDER_DEFAULT);

4. Convert the image to grayscale using cvtColor

cvtColor(src, src_gray, CV_RGB2GRAY);

5. Apply the Laplacian operator to the grayscale image:

Laplacian(src_gray, dst, ddepth, kernel_size, scale, delta, BORDER_DEFAULT);

where the arguments are:

• src_gray: The input image.

• dst: Destination (output) image

• ddepth: Depth of the destination image. Since our input is CV_8U we define ddepth = CV_16S to avoid
overflow

• kernel_size: The kernel size of the Sobel operator to be applied internally. We use 3 in this example.

• scale, delta and BORDER_DEFAULT: We leave them as default values.

6. Convert the output from the Laplacian operator to a CV_8U image:

convertScaleAbs(dst, abs_dst);

7. Display the result in a window:

imshow(window_name, abs_dst);

Results

1. After compiling the code above, we can run it giving as argument the path to an image. For example, using as
an input:

126 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/imgproc_miscellaneous_image_transformations.html#cv-cvtcolor

The OpenCV Tutorials, Release 2.3

2. We obtain the following result. Notice how the trees and the silhouette of the cow are approximately well defined
(except in areas in which the intensity are very similar, i.e. around the cow’s head). Also, note that the roof of
the house behind the trees (right side) is notoriously marked. This is due to the fact that the contrast is higher in
that region.

3.10 Canny Edge Detector

Goal

In this tutorial you will learn how to:

1. Use the OpenCV function Canny to implement the Canny Edge Detector.

Theory

1. The Canny Edge detector was developed by John F. Canny in 1986. Also known to many as the optimal detector,
Canny algorithm aims to satisfy three main criteria:

3.10. Canny Edge Detector 127

http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?#Canny

The OpenCV Tutorials, Release 2.3

• Low error rate: Meaning a good detection of only existent edges.

• Good localization: The distance between edge pixels detected and real edge pixels have to be minimized.

• Minimal response: Only one detector response per edge.

Steps

1. Filter out any noise. The Gaussian filter is used for this purpose. An example of a Gaussian kernel of size = 5

that might be used is shown below:

K =
1

159

2 4 5 4 2

4 9 12 9 4

5 12 15 12 5

4 9 12 9 4

2 4 5 4 2

2. Find the intensity gradient of the image. For this, we follow a procedure analogous to Sobel:

(a) Apply a pair of convolution masks (in x and y directions:

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

Gy =

−1 −2 −1
0 0 0

+1 +2 +1

(b) Find the gradient strength and direction with:

G =
√
G2x +G2y

θ = arctan(
Gy

Gx
)

The direction is rounded to one of four possible angles (namely 0, 45, 90 or 135)

3. Non-maximum suppression is applied. This removes pixels that are not considered to be part of an edge. Hence,
only thin lines (candidate edges) will remain.

4. Hysteresis: The final step. Canny does use two thresholds (upper and lower):

(a) If a pixel gradient is higher than the upper threshold, the pixel is accepted as an edge

(b) If a pixel gradient value is below the lower threshold, then it is rejected.

(c) If the pixel gradient is between the two thresholds, then it will be accepted only if it is connected to a pixel
that is above the upper threshold.

Canny recommended a upper:lower ratio between 2:1 and 3:1.

5. For more details, you can always consult your favorite Computer Vision book.

Code

1. What does this program do?

128 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

• Asks the user to enter a numerical value to set the lower threshold for our Canny Edge Detector (by means
of a Trackbar)

• Applies the Canny Detector and generates a mask (bright lines representing the edges on a black back-
ground).

• Applies the mask obtained on the original image and display it in a window.

2. The tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>

using namespace cv;

/// Global variables

Mat src, src_gray;
Mat dst, detected_edges;

int edgeThresh = 1;
int lowThreshold;
int const max_lowThreshold = 100;
int ratio = 3;
int kernel_size = 3;
char* window_name = "Edge Map";

/**
* @function CannyThreshold

* @brief Trackbar callback - Canny thresholds input with a ratio 1:3

*/
void CannyThreshold(int, void*)
{

/// Reduce noise with a kernel 3x3
blur(src_gray, detected_edges, Size(3,3));

/// Canny detector
Canny(detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size);

/// Using Canny’s output as a mask, we display our result
dst = Scalar::all(0);

src.copyTo(dst, detected_edges);
imshow(window_name, dst);
}

/** @function main */
int main(int argc, char** argv)
{

/// Load an image
src = imread(argv[1]);

if(!src.data)
{ return -1; }

/// Create a matrix of the same type and size as src (for dst)
dst.create(src.size(), src.type());

3.10. Canny Edge Detector 129

https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/CannyDetector_Demo.cpp

The OpenCV Tutorials, Release 2.3

/// Convert the image to grayscale
cvtColor(src, src_gray, CV_BGR2GRAY);

/// Create a window
namedWindow(window_name, CV_WINDOW_AUTOSIZE);

/// Create a Trackbar for user to enter threshold
createTrackbar("Min Threshold:", window_name, &lowThreshold, max_lowThreshold, CannyThreshold);

/// Show the image
CannyThreshold(0, 0);

/// Wait until user exit program by pressing a key
waitKey(0);

return 0;
}

Explanation

1. Create some needed variables:

Mat src, src_gray;
Mat dst, detected_edges;

int edgeThresh = 1;
int lowThreshold;
int const max_lowThreshold = 100;
int ratio = 3;
int kernel_size = 3;
char* window_name = "Edge Map";

Note the following:

a. We establish a ratio of lower:upper threshold of 3:1 (with the variable *ratio*)
b. We set the kernel size of :math:‘3‘ (for the Sobel operations to be performed internally by the Canny function)
c. We set a maximum value for the lower Threshold of :math:‘100‘.

2. Loads the source image:

/// Load an image
src = imread(argv[1]);

if(!src.data)
{ return -1; }

3. Create a matrix of the same type and size of src (to be dst)

dst.create(src.size(), src.type());

4. Convert the image to grayscale (using the function cvtColor:

cvtColor(src, src_gray, CV_BGR2GRAY);

5. Create a window to display the results

130 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/imgproc_miscellaneous_image_transformations.html#cv-cvtcolor

The OpenCV Tutorials, Release 2.3

namedWindow(window_name, CV_WINDOW_AUTOSIZE);

6. Create a Trackbar for the user to enter the lower threshold for our Canny detector:

createTrackbar("Min Threshold:", window_name, &lowThreshold, max_lowThreshold, CannyThreshold);

Observe the following:

(a) The variable to be controlled by the Trackbar is lowThreshold with a limit of max_lowThreshold (which
we set to 100 previously)

(b) Each time the Trackbar registers an action, the callback function CannyThreshold will be invoked.

7. Let’s check the CannyThreshold function, step by step:

(a) First, we blur the image with a filter of kernel size 3:

blur(src_gray, detected_edges, Size(3,3));

(b) Second, we apply the OpenCV function Canny:

Canny(detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size);

where the arguments are:

• detected_edges: Source image, grayscale

• detected_edges: Output of the detector (can be the same as the input)

• lowThreshold: The value entered by the user moving the Trackbar

• highThreshold: Set in the program as three times the lower threshold (following Canny’s recommen-
dation)

• kernel_size: We defined it to be 3 (the size of the Sobel kernel to be used internally)

8. We fill a dst image with zeros (meaning the image is completely black).

dst = Scalar::all(0);

9. Finally, we will use the function copyTo to map only the areas of the image that are identified as edges (on a
black background).

src.copyTo(dst, detected_edges);

copyTo copy the src image onto dst. However, it will only copy the pixels in the locations where they have non-
zero values. Since the output of the Canny detector is the edge contours on a black background, the resulting
dst will be black in all the area but the detected edges.

10. We display our result:

imshow(window_name, dst);

Result

1. After compiling the code above, we can run it giving as argument the path to an image. For example, using as
an input the following image:

3.10. Canny Edge Detector 131

http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?#Canny
http://opencv.willowgarage.com/documentation/cpp/core_basic_structures.html?#Mat::copyTo
http://opencv.willowgarage.com/documentation/cpp/core_basic_structures.html?#Mat::copyTo

The OpenCV Tutorials, Release 2.3

and moving the slider, trying different threshold, we obtain the following result:

Notice how the image is superposed to the black background on the edge regions.

3.11 Hough Line Transform

Goal

In this tutorial you will learn how to:

• Use the OpenCV functions HoughLines and HoughLinesP to detect lines in an image.

Theory

Note: The explanation below belongs to the book Learning OpenCV by Bradski and Kaehler.

Hough Line Transform

1. The Hough Line Transform is a transform used to detect straight lines.

2. To apply the Transform, first an edge detection pre-processing is desirable.

132 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?#cv-houghlines
http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?#cv-houghlinesp

The OpenCV Tutorials, Release 2.3

How does it work?

1. As you know, a line in the image space can be expressed with two variables. For example:

(a) In the Cartesian coordinate system: Parameters: (m,b).

(b) In the Polar coordinate system: Parameters: (r, θ)

For Hough Transforms, we will express lines in the Polar system. Hence, a line equation can be written as:

y =

(
−

cos θ
sin θ

)
x+

(r

sin θ

)
Arranging the terms: r = x cos θ+ y sin θ

1. In general for each point (x0, y0), we can define the family of lines that goes through that point as:

rθ = x0 · cos θ+ y0 · sin θ

Meaning that each pair (rθ, θ) represents each line that passes by (x0, y0).

2. If for a given (x0, y0) we plot the family of lines that goes through it, we get a sinusoid. For instance, for x0 = 8

and y0 = 6 we get the following plot (in a plane θ - r):

3.11. Hough Line Transform 133

The OpenCV Tutorials, Release 2.3

We consider only points such that r > 0 and 0 < θ < 2π.

3. We can do the same operation above for all the points in an image. If the curves of two different points intersect
in the plane θ - r, that means that both points belong to a same line. For instance, following with the example
above and drawing the plot for two more points: x1 = 9, y1 = 4 and x2 = 12, y2 = 3, we get:

The three plots intersect in one single point (0.925, 9.6), these coordinates are the parameters (θ, r) or the line
in which (x0, y0), (x1, y1) and (x2, y2) lay.

4. What does all the stuff above mean? It means that in general, a line can be detected by finding the number of
intersections between curves.The more curves intersecting means that the line represented by that intersection
have more points. In general, we can define a threshold of the minimum number of intersections needed to
detect a line.

5. This is what the Hough Line Transform does. It keeps track of the intersection between curves of every point in
the image. If the number of intersections is above some threshold, then it declares it as a line with the parameters
(θ, rθ) of the intersection point.

Standard and Probabilistic Hough Line Transform

OpenCV implements two kind of Hough Line Transforms:

1. The Standard Hough Transform

• It consists in pretty much what we just explained in the previous section. It gives you as result a vector of
couples (θ, rθ)

• In OpenCV it is implemented with the function HoughLines

2. The Probabilistic Hough Line Transform

• A more efficient implementation of the Hough Line Transform. It gives as output the extremes of the detected
lines (x0, y0, x1, y1)

• In OpenCV it is implemented with the function HoughLinesP

Code

1. What does this program do?

• Loads an image

134 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?#cv-houghlines
http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?#cv-houghlinesp

The OpenCV Tutorials, Release 2.3

• Applies either a Standard Hough Line Transform or a Probabilistic Line Transform.

• Display the original image and the detected line in two windows.

2. The sample code that we will explain can be downloaded from here. A slightly fancier version (which shows
both Hough standard and probabilistic with trackbars for changing the threshold values) can be found here.

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"

#include <iostream>

using namespace cv;
using namespace std;

void help()
{
cout << "\nThis program demonstrates line finding with the Hough transform.\n"

"Usage:\n"
"./houghlines <image_name>, Default is pic1.jpg\n" << endl;

}

int main(int argc, char** argv)
{
const char* filename = argc >= 2 ? argv[1] : "pic1.jpg";

Mat src = imread(filename, 0);
if(src.empty())
{

help();
cout << "can not open " << filename << endl;
return -1;

}

Mat dst, cdst;
Canny(src, dst, 50, 200, 3);
cvtColor(dst, cdst, CV_GRAY2BGR);

#if 0
vector<Vec2f> lines;
HoughLines(dst, lines, 1, CV_PI/180, 100, 0, 0);

for(size_t i = 0; i < lines.size(); i++)
{

float rho = lines[i][0], theta = lines[i][1];
Point pt1, pt2;
double a = cos(theta), b = sin(theta);
double x0 = a*rho, y0 = b*rho;
pt1.x = cvRound(x0 + 1000*(-b));
pt1.y = cvRound(y0 + 1000*(a));
pt2.x = cvRound(x0 - 1000*(-b));
pt2.y = cvRound(y0 - 1000*(a));
line(cdst, pt1, pt2, Scalar(0,0,255), 3, CV_AA);

}
#else
vector<Vec4i> lines;
HoughLinesP(dst, lines, 1, CV_PI/180, 50, 50, 10);
for(size_t i = 0; i < lines.size(); i++)
{

3.11. Hough Line Transform 135

https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/houghlines.cpp
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/HoughLines_Demo.cpp

The OpenCV Tutorials, Release 2.3

Vec4i l = lines[i];
line(cdst, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,0,255), 3, CV_AA);

}
#endif
imshow("source", src);
imshow("detected lines", cdst);

waitKey();

return 0;
}

Explanation

1. Load an image

Mat src = imread(filename, 0);
if(src.empty())
{

help();
cout << "can not open " << filename << endl;
return -1;

}

2. Detect the edges of the image by using a Canny detector

Canny(src, dst, 50, 200, 3);

Now we will apply the Hough Line Transform. We will explain how to use both OpenCV functions available
for this purpose:

3. Standard Hough Line Transform

(a) First, you apply the Transform:

vector<Vec2f> lines;
HoughLines(dst, lines, 1, CV_PI/180, 100, 0, 0);

with the following arguments:

• dst: Output of the edge detector. It should be a grayscale image (although in fact it is a binary one)

• lines: A vector that will store the parameters (r, θ) of the detected lines

• rho : The resolution of the parameter r in pixels. We use 1 pixel.

• theta: The resolution of the parameter θ in radians. We use 1 degree (CV_PI/180)

• threshold: The minimum number of intersections to “detect” a line

• srn and stn: Default parameters to zero. Check OpenCV reference for more info.

(b) And then you display the result by drawing the lines.

for(size_t i = 0; i < lines.size(); i++)
{

float rho = lines[i][0], theta = lines[i][1];
Point pt1, pt2;
double a = cos(theta), b = sin(theta);
double x0 = a*rho, y0 = b*rho;
pt1.x = cvRound(x0 + 1000*(-b));

136 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

pt1.y = cvRound(y0 + 1000*(a));
pt2.x = cvRound(x0 - 1000*(-b));
pt2.y = cvRound(y0 - 1000*(a));
line(cdst, pt1, pt2, Scalar(0,0,255), 3, CV_AA);

}

4. Probabilistic Hough Line Transform

(a) First you apply the transform:

vector<Vec4i> lines;
HoughLinesP(dst, lines, 1, CV_PI/180, 50, 50, 10);

with the arguments:

• dst: Output of the edge detector. It should be a grayscale image (although in fact it is a binary one)

• lines: A vector that will store the parameters (xstart, ystart, xend, yend) of the detected lines

• rho : The resolution of the parameter r in pixels. We use 1 pixel.

• theta: The resolution of the parameter θ in radians. We use 1 degree (CV_PI/180)

• threshold: The minimum number of intersections to “detect” a line

• minLinLength: The minimum number of points that can form a line. Lines with less than this number
of points are disregarded.

• maxLineGap: The maximum gap between two points to be considered in the same line.

(b) And then you display the result by drawing the lines.

for(size_t i = 0; i < lines.size(); i++)
{

Vec4i l = lines[i];
line(cdst, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,0,255), 3, CV_AA);

}

5. Display the original image and the detected lines:

imshow("source", src);
imshow("detected lines", cdst);

6. Wait until the user exits the program

waitKey();

Result

Note: The results below are obtained using the slightly fancier version we mentioned in the Code section. It still
implements the same stuff as above, only adding the Trackbar for the Threshold.

Using an input image such as:

3.11. Hough Line Transform 137

The OpenCV Tutorials, Release 2.3

We get the following result by using the Probabilistic Hough Line Transform:

You may observe that the number of lines detected vary while you change the threshold. The explanation is sort of
evident: If you establish a higher threshold, fewer lines will be detected (since you will need more points to declare a
line detected).

3.12 Hough Circle Transform

Goal

In this tutorial you will learn how to:

• Use the OpenCV function HoughCircles to detect circles in an image.

138 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?#cv-houghcircles

The OpenCV Tutorials, Release 2.3

Theory

Hough Circle Transform

• The Hough Circle Transform works in a roughly analogous way to the Hough Line Transform explained in the
previous tutorial.

• In the line detection case, a line was defined by two parameters (r, θ). In the circle case, we need three parame-
ters to define a circle:

C : (xcenter, ycenter, r)

where (xcenter, ycenter) define the center position (gree point) and r is the radius, which allows us to com-
pletely define a circle, as it can be seen below:

• For sake of efficiency, OpenCV implements a detection method slightly trickier than the standard Hough Trans-
form: The Hough gradient method. For more details, please check the book Learning OpenCV or your favorite
Computer Vision bibliography

Code

1. What does this program do?

• Loads an image and blur it to reduce the noise

• Applies the Hough Circle Transform to the blurred image .

• Display the detected circle in a window.

2. The sample code that we will explain can be downloaded from here. A slightly fancier version (which shows
both Hough standard and probabilistic with trackbars for changing the threshold values) can be found here.

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>

using namespace cv;

/** @function main */

3.12. Hough Circle Transform 139

https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/houghlines.cpp
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/HoughCircle_Demo.cpp

The OpenCV Tutorials, Release 2.3

int main(int argc, char** argv)
{

Mat src, src_gray;

/// Read the image
src = imread(argv[1], 1);

if(!src.data)
{ return -1; }

/// Convert it to gray
cvtColor(src, src_gray, CV_BGR2GRAY);

/// Reduce the noise so we avoid false circle detection
GaussianBlur(src_gray, src_gray, Size(9, 9), 2, 2);

vector<Vec3f> circles;

/// Apply the Hough Transform to find the circles
HoughCircles(src_gray, circles, CV_HOUGH_GRADIENT, 1, src_gray.rows/8, 200, 100, 0, 0);

/// Draw the circles detected
for(size_t i = 0; i < circles.size(); i++)
{

Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
// circle center
circle(src, center, 3, Scalar(0,255,0), -1, 8, 0);
// circle outline
circle(src, center, radius, Scalar(0,0,255), 3, 8, 0);

}

/// Show your results
namedWindow("Hough Circle Transform Demo", CV_WINDOW_AUTOSIZE);
imshow("Hough Circle Transform Demo", src);

waitKey(0);
return 0;

}

Explanation

1. Load an image

src = imread(argv[1], 1);

if(!src.data)
{ return -1; }

2. Convert it to grayscale:

cvtColor(src, src_gray, CV_BGR2GRAY);

3. Apply a Gaussian blur to reduce noise and avoid false circle detection:

GaussianBlur(src_gray, src_gray, Size(9, 9), 2, 2);

4. Proceed to apply Hough Circle Transform:

140 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

vector<Vec3f> circles;

HoughCircles(src_gray, circles, CV_HOUGH_GRADIENT, 1, src_gray.rows/8, 200, 100, 0, 0);

with the arguments:

• src_gray: Input image (grayscale)

• circles: A vector that stores sets of 3 values: xc, yc, r for each detected circle.

• CV_HOUGH_GRADIENT: Define the detection method. Currently this is the only one available in
OpenCV

• dp = 1: The inverse ratio of resolution

• min_dist = src_gray.rows/8: Minimum distance between detected centers

• param_1 = 200: Upper threshold for the internal Canny edge detector

• param_2 = 100*: Threshold for center detection.

• min_radius = 0: Minimum radio to be detected. If unknown, put zero as default.

• max_radius = 0: Maximum radius to be detected. If unknown, put zero as default

5. Draw the detected circles:

for(size_t i = 0; i < circles.size(); i++)
{

Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
// circle center
circle(src, center, 3, Scalar(0,255,0), -1, 8, 0);
// circle outline
circle(src, center, radius, Scalar(0,0,255), 3, 8, 0);

}

You can see that we will draw the circle(s) on red and the center(s) with a small green dot

6. Display the detected circle(s):

namedWindow("Hough Circle Transform Demo", CV_WINDOW_AUTOSIZE);
imshow("Hough Circle Transform Demo", src);

7. Wait for the user to exit the program

waitKey(0);

Result

The result of running the code above with a test image is shown below:

3.12. Hough Circle Transform 141

The OpenCV Tutorials, Release 2.3

3.13 Remapping

Goal

In this tutorial you will learn how to:

1. Use the OpenCV function remap to implement simple remapping routines.

Theory

What is remapping?

• It is the process of taking pixels from one place in the image and locating them in another position in a new
image.

• To accomplish the mapping process, it might be necessary to do some interpolation for non-integer pixel loca-
tions, since there will not always be a one-to-one-pixel correspondence between source and destination images.

• We can express the remap for every pixel location (x, y) as:

g(x, y) = f(h(x, y))

where g() is the remapped image, f() the source image and h(x, y) is the mapping function that operates on
(x, y).

• Let’s think in a quick example. Imagine that we have an image I and, say, we want to do a remap such that:

h(x, y) = (I.cols− x, y)

What would happen? It is easily seen that the image would flip in the x direction. For instance, consider the
input image:

142 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/imgproc_geometric_image_transformations.html?#remap

The OpenCV Tutorials, Release 2.3

observe how the red circle changes positions with respect to x (considering x the horizontal direction):

• In OpenCV, the function remap offers a simple remapping implementation.

Code

1. What does this program do?

• Loads an image

• Each second, apply 1 of 4 different remapping processes to the image and display them indefinitely in a
window.

• Wait for the user to exit the program

2. The tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>

using namespace cv;

/// Global variables
Mat src, dst;

3.13. Remapping 143

http://opencv.willowgarage.com/documentation/cpp/imgproc_geometric_image_transformations.html?#remap
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp

The OpenCV Tutorials, Release 2.3

Mat map_x, map_y;
char* remap_window = "Remap demo";
int ind = 0;

/// Function Headers
void update_map(void);

/**
* @function main

*/
int main(int argc, char** argv)
{

/// Load the image
src = imread(argv[1], 1);

/// Create dst, map_x and map_y with the same size as src:
dst.create(src.size(), src.type());
map_x.create(src.size(), CV_32FC1);
map_y.create(src.size(), CV_32FC1);

/// Create window
namedWindow(remap_window, CV_WINDOW_AUTOSIZE);

/// Loop
while(true)
{

/// Each 1 sec. Press ESC to exit the program
int c = waitKey(1000);

if((char)c == 27)
{ break; }

/// Update map_x & map_y. Then apply remap
update_map();
remap(src, dst, map_x, map_y, CV_INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0));

/// Display results
imshow(remap_window, dst);

}
return 0;
}

/**
* @function update_map

* @brief Fill the map_x and map_y matrices with 4 types of mappings

*/
void update_map(void)
{

ind = ind%4;

for(int j = 0; j < src.rows; j++)
{ for(int i = 0; i < src.cols; i++)

{
switch(ind)
{

case 0:
if(i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75)

{

144 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

map_x.at<float>(j,i) = 2*(i - src.cols*0.25) + 0.5 ;
map_y.at<float>(j,i) = 2*(j - src.rows*0.25) + 0.5 ;
}

else
{ map_x.at<float>(j,i) = 0 ;
map_y.at<float>(j,i) = 0 ;

}
break;

case 1:
map_x.at<float>(j,i) = i ;
map_y.at<float>(j,i) = src.rows - j ;
break;

case 2:
map_x.at<float>(j,i) = src.cols - i ;
map_y.at<float>(j,i) = j ;
break;

case 3:
map_x.at<float>(j,i) = src.cols - i ;
map_y.at<float>(j,i) = src.rows - j ;
break;

} // end of switch
}

}
ind++;

}

Explanation

1. Create some variables we will use:

Mat src, dst;
Mat map_x, map_y;
char* remap_window = "Remap demo";
int ind = 0;

2. Load an image:

src = imread(argv[1], 1);

3. Create the destination image and the two mapping matrices (for x and y)

dst.create(src.size(), src.type());
map_x.create(src.size(), CV_32FC1);
map_y.create(src.size(), CV_32FC1);

4. Create a window to display results

namedWindow(remap_window, CV_WINDOW_AUTOSIZE);

5. Establish a loop. Each 1000 ms we update our mapping matrices (mat_x and mat_y) and apply them to our
source image:

while(true)
{

/// Each 1 sec. Press ESC to exit the program
int c = waitKey(1000);

if((char)c == 27)

3.13. Remapping 145

The OpenCV Tutorials, Release 2.3

{ break; }

/// Update map_x & map_y. Then apply remap
update_map();
remap(src, dst, map_x, map_y, CV_INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0));

/// Display results
imshow(remap_window, dst);

}

The function that applies the remapping is remap. We give the following arguments:

• src: Source image

• dst: Destination image of same size as src

• map_x: The mapping function in the x direction. It is equivalent to the first component of h(i, j)

• map_y: Same as above, but in y direction. Note that map_y and map_x are both of the same size as src

• CV_INTER_LINEAR: The type of interpolation to use for non-integer pixels. This is by default.

• BORDER_CONSTANT: Default

How do we update our mapping matrices mat_x and mat_y? Go on reading:

6. Updating the mapping matrices: We are going to perform 4 different mappings:

(a) Reduce the picture to half its size and will display it in the middle:

h(i, j) = (2 ∗ i− src.cols/2+ 0.5, 2 ∗ j− src.rows/2+ 0.5)

for all pairs (i, j) such that:
src.cols

4
< i <

3 · src.cols
4

and
src.rows

4
< j <

3 · src.rows
4

(b) Turn the image upside down: h(i, j) = (i, src.rows− j)

(c) Reflect the image from left to right: h(i, j) = (src.cols− i, j)

(d) Combination of b and c: h(i, j) = (src.cols− i, src.rows− j)

This is expressed in the following snippet. Here, map_x represents the first coordinate of h(i,j) and map_y
the second coordinate.

for(int j = 0; j < src.rows; j++)
{ for(int i = 0; i < src.cols; i++)

{
switch(ind)
{

case 0:
if(i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75)

{
map_x.at<float>(j,i) = 2*(i - src.cols*0.25) + 0.5 ;
map_y.at<float>(j,i) = 2*(j - src.rows*0.25) + 0.5 ;
}

else
{ map_x.at<float>(j,i) = 0 ;
map_y.at<float>(j,i) = 0 ;

}
break;

case 1:
map_x.at<float>(j,i) = i ;
map_y.at<float>(j,i) = src.rows - j ;

146 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/imgproc_geometric_image_transformations.html?#remap

The OpenCV Tutorials, Release 2.3

break;
case 2:

map_x.at<float>(j,i) = src.cols - i ;
map_y.at<float>(j,i) = j ;
break;

case 3:
map_x.at<float>(j,i) = src.cols - i ;
map_y.at<float>(j,i) = src.rows - j ;
break;

} // end of switch
}

}
ind++;
}

Result

1. After compiling the code above, you can execute it giving as argument an image path. For instance, by using
the following image:

2. This is the result of reducing it to half the size and centering it:

3. Turning it upside down:

3.13. Remapping 147

The OpenCV Tutorials, Release 2.3

4. Reflecting it in the x direction:

5. Reflecting it in both directions:

3.14 Affine Transformations

Goal

In this tutorial you will learn how to:

1. Use the OpenCV function warpAffine to implement simple remapping routines.

148 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/imgproc_geometric_image_transformations.html?#cv-warpaffine

The OpenCV Tutorials, Release 2.3

2. Use the OpenCV function getRotationMatrix2D to obtain a 2× 3 rotation matrix

Theory

What is an Affine Transformation?

1. It is any transformation that can be expressed in the form of a matrix multiplication (linear transformation)
followed by a vector addition (translation).

2. From the above, We can use an Affine Transformation to express:

(a) Rotations (linear transformation)

(b) Translations (vector addition)

(c) Scale operations (linear transformation)

you can see that, in essence, an Affine Transformation represents a relation between two images.

3. The usual way to represent an Affine Transform is by using a 2× 3 matrix.

A =

[
a00 a01
a10 a11

]
2×2

B =

[
b00
b10

]
2×1

M =
[
A B

]
=

[
a00 a01 b00
a10 a11 b10

]
2×3

Considering that we want to transform a 2D vector X =

[
x

y

]
by using A and B, we can do it equivalently with:

T = A ·
[
x

y

]
+ B or T = M · [x, y, 1]T

T =

[
a00x+ a01y+ b00
a10x+ a11y+ b10

]

How do we get an Affine Transformation?

1. Excellent question. We mentioned that an Affine Transformation is basically a relation between two images.
The information about this relation can come, roughly, in two ways:

(a) We know both X and T and we also know that they are related. Then our job is to findM

(b) We know M and :math:’X‘. To obtain T we only need to apply T = M · X. Our information for M may
be explicit (i.e. have the 2-by-3 matrix) or it can come as a geometric relation between points.

2. Let’s explain a little bit better (b). Since M relates 02 images, we can analyze the simplest case in which it
relates three points in both images. Look at the figure below:

3.14. Affine Transformations 149

http://opencv.willowgarage.com/documentation/cpp/imgproc_geometric_image_transformations.html?#cv-getrotationmatrix2d

The OpenCV Tutorials, Release 2.3

the points 1, 2 and 3 (forming a triangle in image 1) are mapped into image 2, still forming a triangle, but now
they have changed notoriously. If we find the Affine Transformation with these 3 points (you can choose them
as you like), then we can apply this found relation to the whole pixels in the image.

Code

1. What does this program do?

• Loads an image

• Applies an Affine Transform to the image. This Transform is obtained from the relation between three
points. We use the function warpAffine for that purpose.

• Applies a Rotation to the image after being transformed. This rotation is with respect to the image center

• Waits until the user exits the program

2. The tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>

using namespace cv;
using namespace std;

/// Global variables
char* source_window = "Source image";
char* warp_window = "Warp";
char* warp_rotate_window = "Warp + Rotate";

/** @function main */
int main(int argc, char** argv)
{

Point2f srcTri[3];
Point2f dstTri[3];

Mat rot_mat(2, 3, CV_32FC1);
Mat warp_mat(2, 3, CV_32FC1);
Mat src, warp_dst, warp_rotate_dst;

/// Load the image
src = imread(argv[1], 1);

150 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/imgproc_geometric_image_transformations.html?#cv-warpaffine
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/Geometric_Transforms_Demo.cpp

The OpenCV Tutorials, Release 2.3

/// Set the dst image the same type and size as src
warp_dst = Mat::zeros(src.rows, src.cols, src.type());

/// Set your 3 points to calculate the Affine Transform
srcTri[0] = Point2f(0,0);
srcTri[1] = Point2f(src.cols - 1, 0);
srcTri[2] = Point2f(0, src.rows - 1);

dstTri[0] = Point2f(src.cols*0.0, src.rows*0.33);
dstTri[1] = Point2f(src.cols*0.85, src.rows*0.25);
dstTri[2] = Point2f(src.cols*0.15, src.rows*0.7);

/// Get the Affine Transform
warp_mat = getAffineTransform(srcTri, dstTri);

/// Apply the Affine Transform just found to the src image
warpAffine(src, warp_dst, warp_mat, warp_dst.size());

/** Rotating the image after Warp */

/// Compute a rotation matrix with respect to the center of the image
Point center = Point(warp_dst.cols/2, warp_dst.rows/2);
double angle = -50.0;
double scale = 0.6;

/// Get the rotation matrix with the specifications above
rot_mat = getRotationMatrix2D(center, angle, scale);

/// Rotate the warped image
warpAffine(warp_dst, warp_rotate_dst, rot_mat, warp_dst.size());

/// Show what you got
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, src);

namedWindow(warp_window, CV_WINDOW_AUTOSIZE);
imshow(warp_window, warp_dst);

namedWindow(warp_rotate_window, CV_WINDOW_AUTOSIZE);
imshow(warp_rotate_window, warp_rotate_dst);

/// Wait until user exits the program
waitKey(0);

return 0;
}

Explanation

1. Declare some variables we will use, such as the matrices to store our results and 2 arrays of points to store the
2D points that define our Affine Transform.

Point2f srcTri[3];
Point2f dstTri[3];

Mat rot_mat(2, 3, CV_32FC1);

3.14. Affine Transformations 151

The OpenCV Tutorials, Release 2.3

Mat warp_mat(2, 3, CV_32FC1);
Mat src, warp_dst, warp_rotate_dst;

2. Load an image:

src = imread(argv[1], 1);

3. Initialize the destination image as having the same size and type as the source:

warp_dst = Mat::zeros(src.rows, src.cols, src.type());

4. Affine Transform: As we explained lines above, we need two sets of 3 points to derive the affine transform
relation. Take a look:

srcTri[0] = Point2f(0,0);
srcTri[1] = Point2f(src.cols - 1, 0);
srcTri[2] = Point2f(0, src.rows - 1);

dstTri[0] = Point2f(src.cols*0.0, src.rows*0.33);
dstTri[1] = Point2f(src.cols*0.85, src.rows*0.25);
dstTri[2] = Point2f(src.cols*0.15, src.rows*0.7);

You may want to draw the points to make a better idea of how they change. Their locations are approximately
the same as the ones depicted in the example figure (in the Theory section). You may note that the size and
orientation of the triangle defined by the 3 points change.

5. Armed with both sets of points, we calculate the Affine Transform by using OpenCV function getAffineTrans-
form:

warp_mat = getAffineTransform(srcTri, dstTri);

We get as an output a 2× 3 matrix (in this case warp_mat)

6. We apply the Affine Transform just found to the src image

warpAffine(src, warp_dst, warp_mat, warp_dst.size());

with the following arguments:

• src: Input image

• warp_dst: Output image

• warp_mat: Affine transform

• warp_dst.size(): The desired size of the output image

We just got our first transformed image! We will display it in one bit. Before that, we also want to rotate it...

7. Rotate: To rotate an image, we need to know two things:

(a) The center with respect to which the image will rotate

(b) The angle to be rotated. In OpenCV a positive angle is counter-clockwise

(c) Optional: A scale factor

We define these parameters with the following snippet:

Point center = Point(warp_dst.cols/2, warp_dst.rows/2);
double angle = -50.0;
double scale = 0.6;

152 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/imgproc_geometric_image_transformations.html?#cv-getaffinetransform
http://opencv.willowgarage.com/documentation/cpp/imgproc_geometric_image_transformations.html?#cv-getaffinetransform

The OpenCV Tutorials, Release 2.3

8. We generate the rotation matrix with the OpenCV function getRotationMatrix2D, which returns a 2× 3 matrix
(in this case rot_mat)

rot_mat = getRotationMatrix2D(center, angle, scale);

9. We now apply the found rotation to the output of our previous Transformation.

warpAffine(warp_dst, warp_rotate_dst, rot_mat, warp_dst.size());

10. Finally, we display our results in two windows plus the original image for good measure:

namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, src);

namedWindow(warp_window, CV_WINDOW_AUTOSIZE);
imshow(warp_window, warp_dst);

namedWindow(warp_rotate_window, CV_WINDOW_AUTOSIZE);
imshow(warp_rotate_window, warp_rotate_dst);

11. We just have to wait until the user exits the program

waitKey(0);

Result

1. After compiling the code above, we can give it the path of an image as argument. For instance, for a picture
like:

after applying the first Affine Transform we obtain:

3.14. Affine Transformations 153

http://opencv.willowgarage.com/documentation/cpp/imgproc_geometric_image_transformations.html?#cv-getrotationmatrix2d

The OpenCV Tutorials, Release 2.3

and finally, after applying a negative rotation (remember negative means clockwise) and a scale factor, we get:

3.15 Histogram Equalization

Goal

In this tutorial you will learn:

• What an image histogram is and why it is useful

• To equalize histograms of images by using the OpenCV function:equalize_hist:equalizeHist <>

Theory

What is an Image Histogram?

• It is a graphical representation of the intensity distribution of an image.

154 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

• It quantifies the number of pixels for each intensity value considered.

What is Histogram Equalization?

• It is a method that improves the contrast in an image, in order to stretch out the intensity range.

• To make it clearer, from the image above, you can see that the pixels seem clustered around the middle of the
available range of intensities. What Histogram Equalization does is to stretch out this range. Take a look at the
figure below: The green circles indicate the underpopulated intensities. After applying the equalization, we get
an histogram like the figure in the center. The resulting image is shown in the picture at right.

How does it work?

• Equalization implies mapping one distribution (the given histogram) to another distribution (a wider and more
uniform distribution of intensity values) so the intensity values are spreaded over the whole range.

• To accomplish the equalization effect, the remapping should be the cumulative distribution function (cdf) (more

3.15. Histogram Equalization 155

The OpenCV Tutorials, Release 2.3

details, refer to Learning OpenCV). For the histogram H(i), its cumulative distribution H
′
(i) is:

H
′
(i) =

∑
0≤j<i

H(j)

To use this as a remapping function, we have to normalize H
′
(i) such that the maximum value is 255 (or the

maximum value for the intensity of the image). From the example above, the cumulative function is:

• Finally, we use a simple remapping procedure to obtain the intensity values of the equalized image:

equalized(x, y) = H
′
(src(x, y))

Code

• What does this program do?

– Loads an image

– Convert the original image to grayscale

– Equalize the Histogram by using the OpenCV function EqualizeHist

– Display the source and equalized images in a window.

• Downloadable code: Click here

• Code at glance:

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>

using namespace cv;
using namespace std;

/** @function main */
int main(int argc, char** argv)
{

Mat src, dst;

156 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/imgproc_histograms.html?#equalizeHist
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/Histograms_Matching/EqualizeHist_Demo.cpp

The OpenCV Tutorials, Release 2.3

char* source_window = "Source image";
char* equalized_window = "Equalized Image";

/// Load image
src = imread(argv[1], 1);

if(!src.data)
{ cout<<"Usage: ./Histogram_Demo <path_to_image>"<<endl;

return -1;}

/// Convert to grayscale
cvtColor(src, src, CV_BGR2GRAY);

/// Apply Histogram Equalization
equalizeHist(src, dst);

/// Display results
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
namedWindow(equalized_window, CV_WINDOW_AUTOSIZE);

imshow(source_window, src);
imshow(equalized_window, dst);

/// Wait until user exits the program
waitKey(0);

return 0;
}

Explanation

1. Declare the source and destination images as well as the windows names:

Mat src, dst;

char* source_window = "Source image";
char* equalized_window = "Equalized Image";

2. Load the source image:

src = imread(argv[1], 1);

if(!src.data)
{ cout<<"Usage: ./Histogram_Demo <path_to_image>"<<endl;

return -1;}

3. Convert it to grayscale:

cvtColor(src, src, CV_BGR2GRAY);

4. Apply histogram equalization with the function equalizeHist :

equalizeHist(src, dst);

As it can be easily seen, the only arguments are the original image and the output (equalized) image.

5. Display both images (original and equalized) :

3.15. Histogram Equalization 157

http://opencv.willowgarage.com/documentation/cpp/imgproc_histograms.html?#equalizeHist

The OpenCV Tutorials, Release 2.3

namedWindow(source_window, CV_WINDOW_AUTOSIZE);
namedWindow(equalized_window, CV_WINDOW_AUTOSIZE);

imshow(source_window, src);
imshow(equalized_window, dst);

6. Wait until user exists the program

waitKey(0);
return 0;

Results

1. To appreciate better the results of equalization, let’s introduce an image with not much contrast, such as:

which, by the way, has this histogram:

158 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

notice that the pixels are clustered around the center of the histogram.

2. After applying the equalization with our program, we get this result:

this image has certainly more contrast. Check out its new histogram like this:

3.15. Histogram Equalization 159

The OpenCV Tutorials, Release 2.3

Notice how the number of pixels is more distributed through the intensity range.

Note: Are you wondering how did we draw the Histogram figures shown above? Check out the following tutorial!

3.16 Histogram Calculation

Goal

In this tutorial you will learn how to:

• Use the OpenCV function split to divide an image into its correspondent planes.

• To calculate histograms of arrays of images by using the OpenCV function calcHist

• To normalize an array by using the function normalize

Note: In the last tutorial (Histogram Equalization) we talked about a particular kind of histogram called Image
histogram. Now we will considerate it in its more general concept. Read on!

What are histograms?

• Histograms are collected counts of data organized into a set of predefined bins

• When we say data we are not restricting it to be intensity values (as we saw in the previous Tutorial). The data
collected can be whatever feature you find useful to describe your image.

• Let’s see an example. Imagine that a Matrix contains information of an image (i.e. intensity in the range 0−255):

160 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?#split
http://opencv.willowgarage.com/documentation/cpp/imgproc_histograms.html?#calcHist
http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?#normalize

The OpenCV Tutorials, Release 2.3

• What happens if we want to count this data in an organized way? Since we know that the range of information
value for this case is 256 values, we can segment our range in subparts (called bins) like:

[0, 255] = [0, 15] ∪ [16, 31] ∪ ∪ [240, 255]
range = bin1 ∪ bin2 ∪ ∪ binn=15

and we can keep count of the number of pixels that fall in the range of each bini. Applying this to the example
above we get the image below (axis x represents the bins and axis y the number of pixels in each of them).

3.16. Histogram Calculation 161

The OpenCV Tutorials, Release 2.3

• This was just a simple example of how an histogram works and why it is useful. An histogram can keep count
not only of color intensities, but of whatever image features that we want to measure (i.e. gradients, directions,
etc).

• Let’s identify some parts of the histogram:

1. dims: The number of parameters you want to collect data of. In our example, dims = 1 because we are
only counting the intensity values of each pixel (in a greyscale image).

2. bins: It is the number of subdivisions in each dim. In our example, bins = 16

3. range: The limits for the values to be measured. In this case: range = [0,255]

• What if you want to count two features? In this case your resulting histogram would be a 3D plot (in which x
and y would be binx and biny for each feature and z would be the number of counts for each combination of
(binx, biny). The same would apply for more features (of course it gets trickier).

What OpenCV offers you

For simple purposes, OpenCV implements the function calcHist, which calculates the histogram of a set of arrays
(usually images or image planes). It can operate with up to 32 dimensions. We will see it in the code below!

Code

• What does this program do?

– Loads an image

– Splits the image into its R, G and B planes using the function split

– Calculate the Histogram of each 1-channel plane by calling the function calcHist

– Plot the three histograms in a window

• Downloadable code: Click here

• Code at glance:

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>

using namespace std;
using namespace cv;

162 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/imgproc_histograms.html?#calcHist
http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?#split
http://opencv.willowgarage.com/documentation/cpp/imgproc_histograms.html?#calcHist
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/Histograms_Matching/calcHist_Demo.cpp

The OpenCV Tutorials, Release 2.3

/** @function main */
int main(int argc, char** argv)
{

Mat src, dst;

/// Load image
src = imread(argv[1], 1);

if(!src.data)
{ return -1; }

/// Separate the image in 3 places (R, G and B)
vector<Mat> rgb_planes;
split(src, rgb_planes);

/// Establish the number of bins
int histSize = 255;

/// Set the ranges (for R,G,B))
float range[] = { 0, 255 } ;
const float* histRange = { range };

bool uniform = true; bool accumulate = false;

Mat r_hist, g_hist, b_hist;

/// Compute the histograms:
calcHist(&rgb_planes[0], 1, 0, Mat(), r_hist, 1, &histSize, &histRange, uniform, accumulate);
calcHist(&rgb_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRange, uniform, accumulate);
calcHist(&rgb_planes[2], 1, 0, Mat(), b_hist, 1, &histSize, &histRange, uniform, accumulate);

// Draw the histograms for R, G and B
int hist_w = 400; int hist_h = 400;
int bin_w = cvRound((double) hist_w/histSize);

Mat histImage(hist_w, hist_h, CV_8UC3, Scalar(0,0,0));

/// Normalize the result to [0, histImage.rows]
normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());

/// Draw for each channel
for(int i = 1; i < histSize; i++)
{

line(histImage, Point(bin_w*(i-1), hist_h - cvRound(r_hist.at<float>(i-1))) ,
Point(bin_w*(i), hist_h - cvRound(r_hist.at<float>(i))),
Scalar(0, 0, 255), 2, 8, 0);

line(histImage, Point(bin_w*(i-1), hist_h - cvRound(g_hist.at<float>(i-1))) ,
Point(bin_w*(i), hist_h - cvRound(g_hist.at<float>(i))),
Scalar(0, 255, 0), 2, 8, 0);

line(histImage, Point(bin_w*(i-1), hist_h - cvRound(b_hist.at<float>(i-1))) ,
Point(bin_w*(i), hist_h - cvRound(b_hist.at<float>(i))),
Scalar(255, 0, 0), 2, 8, 0);

}

/// Display
namedWindow("calcHist Demo", CV_WINDOW_AUTOSIZE);

3.16. Histogram Calculation 163

The OpenCV Tutorials, Release 2.3

imshow("calcHist Demo", histImage);

waitKey(0);

return 0;

}

Explanation

1. Create the necessary matrices:

Mat src, dst;

2. Load the source image

src = imread(argv[1], 1);

if(!src.data)
{ return -1; }

3. Separate the source image in its three R,G and B planes. For this we use the OpenCV function split:

vector<Mat> rgb_planes;
split(src, rgb_planes);

our input is the image to be divided (this case with three channels) and the output is a vector of Mat)

4. Now we are ready to start configuring the histograms for each plane. Since we are working with the R, G and
B planes, we know that our values will range in the interval [0, 255]

(a) Establish number of bins (5, 10...):

int histSize = 255;

(b) Set the range of values (as we said, between 0 and 255)

/// Set the ranges (for R,G,B))
float range[] = { 0, 255 } ;
const float* histRange = { range };

(c) We want our bins to have the same size (uniform) and to clear the histograms in the beginning, so:

bool uniform = true; bool accumulate = false;

(d) Finally, we create the Mat objects to save our histograms. Creating 3 (one for each plane):

Mat r_hist, g_hist, b_hist;

(e) We proceed to calculate the histograms by using the OpenCV function calcHist:

/// Compute the histograms:
calcHist(&rgb_planes[0], 1, 0, Mat(), r_hist, 1, &histSize, &histRange, uniform, accumulate);
calcHist(&rgb_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRange, uniform, accumulate);
calcHist(&rgb_planes[2], 1, 0, Mat(), b_hist, 1, &histSize, &histRange, uniform, accumulate);

where the arguments are:

• &rgb_planes[0]: The source array(s)

• 1: The number of source arrays (in this case we are using 1. We can enter here also a list of arrays)

164 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?#split
http://opencv.willowgarage.com/documentation/cpp/imgproc_histograms.html?#calcHist

The OpenCV Tutorials, Release 2.3

• 0: The channel (dim) to be measured. In this case it is just the intensity (each array is single-channel)
so we just write 0.

• Mat(): A mask to be used on the source array (zeros indicating pixels to be ignored). If not defined
it is not used

• r_hist: The Mat object where the histogram will be stored

• 1: The histogram dimensionality.

• histSize: The number of bins per each used dimension

• histRange: The range of values to be measured per each dimension

• uniform and accumulate: The bin sizes are the same and the histogram is cleared at the beginning.

5. Create an image to display the histograms:

// Draw the histograms for R, G and B
int hist_w = 400; int hist_h = 400;
int bin_w = cvRound((double) hist_w/histSize);

Mat histImage(hist_w, hist_h, CV_8UC3, Scalar(0,0,0));

6. Notice that before drawing, we first normalize the histogram so its values fall in the range indicated by the
parameters entered:

/// Normalize the result to [0, histImage.rows]
normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());

this function receives these arguments:

• r_hist: Input array

• r_hist: Output normalized array (can be the same)

• 0 and**histImage.rows**: For this example, they are the lower and upper limits to normalize the values
of r_hist

• NORM_MINMAX: Argument that indicates the type of normalization (as described above, it adjusts the
values between the two limits set before)

• -1: Implies that the output normalized array will be the same type as the input

• Mat(): Optional mask

7. Finally, observe that to access the bin (in this case in this 1D-Histogram):

/// Draw for each channel
for(int i = 1; i < histSize; i++)

{
line(histImage, Point(bin_w*(i-1), hist_h - cvRound(r_hist.at<float>(i-1))) ,

Point(bin_w*(i), hist_h - cvRound(r_hist.at<float>(i))),
Scalar(0, 0, 255), 2, 8, 0);

line(histImage, Point(bin_w*(i-1), hist_h - cvRound(g_hist.at<float>(i-1))) ,
Point(bin_w*(i), hist_h - cvRound(g_hist.at<float>(i))),
Scalar(0, 255, 0), 2, 8, 0);

line(histImage, Point(bin_w*(i-1), hist_h - cvRound(b_hist.at<float>(i-1))) ,
Point(bin_w*(i), hist_h - cvRound(b_hist.at<float>(i))),
Scalar(255, 0, 0), 2, 8, 0);

}

3.16. Histogram Calculation 165

http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?#normalize

The OpenCV Tutorials, Release 2.3

we use the expression:

.. code-block:: cpp

r_hist.at<float>(i)

where :math:‘i‘ indicates the dimension. If it were a 2D-histogram we would use something like:

.. code-block:: cpp

r_hist.at<float>(i, j)

8. Finally we display our histograms and wait for the user to exit:

namedWindow("calcHist Demo", CV_WINDOW_AUTOSIZE);
imshow("calcHist Demo", histImage);

waitKey(0);

return 0;

Result

1. Using as input argument an image like the shown below:

2. Produces the following histogram:

166 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

3.17 Histogram Comparison

Goal

In this tutorial you will learn how to:

• Use the function compareHist to get a numerical parameter that express how well two histograms match with
each other.

• Use different metrics to compare histograms

Theory

• To compare two histograms (H1 and H2), first we have to choose a metric (d(H1, H2)) to express how well
both histograms match.

• OpenCV implements the function compareHist to perform a comparison. It also offers 4 different metrics to
compute the matching:

1. Correlation (CV_COMP_CORREL)

d(H1, H2) =

∑
I(H1(I) − H̄1)(H2(I) − H̄2)√∑

I(H1(I) − H̄1)2
∑
I(H2(I) − H̄2)2

where

H̄k =
1

N

∑
J

Hk(J)

and N is the total number of histogram bins.

3.17. Histogram Comparison 167

http://opencv.willowgarage.com/documentation/cpp/imgproc_histograms.html?#compareHist
http://opencv.willowgarage.com/documentation/cpp/imgproc_histograms.html?#compareHist

The OpenCV Tutorials, Release 2.3

2. Chi-Square (CV_COMP_CHISQR)

d(H1, H2) =
∑
I

(H1(I) −H2(I))
2

H1(I) +H2(I)

3. Intersection (method=CV_COMP_INTERSECT)

d(H1, H2) =
∑
I

min(H1(I), H2(I))

4. Bhattacharyya distance (CV_COMP_BHATTACHARYYA)

d(H1, H2) =

√
1−

1√
H̄1H̄2N2

∑
I

√
H1(I) ·H2(I)

Code

• What does this program do?

– Loads a base image and 2 test images to be compared with it.

– Generate 1 image that is the lower half of the base image

– Convert the images to HSV format

– Calculate the H-S histogram for all the images and normalize them in order to compare them.

– Compare the histogram of the base image with respect to the 2 test histograms, the histogram of the lower
half base image and with the same base image histogram.

– Display the numerical matching parameters obtained.

• Downloadable code: Click here

• Code at glance:

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>

using namespace std;
using namespace cv;

/** @function main */
int main(int argc, char** argv)
{

Mat src_base, hsv_base;
Mat src_test1, hsv_test1;
Mat src_test2, hsv_test2;
Mat hsv_half_down;

/// Load three images with different environment settings
if(argc < 4)

{ printf("** Error. Usage: ./compareHist_Demo <image_settings0> <image_setting1> <image_settings2>\n");
return -1;

}

168 Chapter 3. imgproc module. Image Processing

https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/Histograms_Matching/compareHist_Demo.cpp

The OpenCV Tutorials, Release 2.3

src_base = imread(argv[1], 1);
src_test1 = imread(argv[2], 1);
src_test2 = imread(argv[3], 1);

/// Convert to HSV
cvtColor(src_base, hsv_base, CV_BGR2HSV);
cvtColor(src_test1, hsv_test1, CV_BGR2HSV);
cvtColor(src_test2, hsv_test2, CV_BGR2HSV);

hsv_half_down = hsv_base(Range(hsv_base.rows/2, hsv_base.rows - 1), Range(0, hsv_base.cols - 1));

/// Using 30 bins for hue and 32 for saturation
int h_bins = 50; int s_bins = 60;
int histSize[] = { h_bins, s_bins };

// hue varies from 0 to 256, saturation from 0 to 180
float h_ranges[] = { 0, 256 };
float s_ranges[] = { 0, 180 };

const float* ranges[] = { h_ranges, s_ranges };

// Use the o-th and 1-st channels
int channels[] = { 0, 1 };

/// Histograms
MatND hist_base;
MatND hist_half_down;
MatND hist_test1;
MatND hist_test2;

/// Calculate the histograms for the HSV images
calcHist(&hsv_base, 1, channels, Mat(), hist_base, 2, histSize, ranges, true, false);
normalize(hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat());

calcHist(&hsv_half_down, 1, channels, Mat(), hist_half_down, 2, histSize, ranges, true, false);
normalize(hist_half_down, hist_half_down, 0, 1, NORM_MINMAX, -1, Mat());

calcHist(&hsv_test1, 1, channels, Mat(), hist_test1, 2, histSize, ranges, true, false);
normalize(hist_test1, hist_test1, 0, 1, NORM_MINMAX, -1, Mat());

calcHist(&hsv_test2, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false);
normalize(hist_test2, hist_test2, 0, 1, NORM_MINMAX, -1, Mat());

/// Apply the histogram comparison methods
for(int i = 0; i < 4; i++)

{ int compare_method = i;
double base_base = compareHist(hist_base, hist_base, compare_method);
double base_half = compareHist(hist_base, hist_half_down, compare_method);
double base_test1 = compareHist(hist_base, hist_test1, compare_method);
double base_test2 = compareHist(hist_base, hist_test2, compare_method);

printf(" Method [%d] Perfect, Base-Half, Base-Test(1), Base-Test(2) : %f, %f, %f, %f \n", i, base_base, base_half , base_test1, base_test2);
}

printf("Done \n");

return 0;
}

3.17. Histogram Comparison 169

The OpenCV Tutorials, Release 2.3

Explanation

1. Declare variables such as the matrices to store the base image and the two other images to compare (RGB and
HSV)

Mat src_base, hsv_base;
Mat src_test1, hsv_test1;
Mat src_test2, hsv_test2;
Mat hsv_half_down;

2. Load the base image (src_base) and the other two test images:

if(argc < 4)
{ printf("** Error. Usage: ./compareHist_Demo <image_settings0> <image_setting1> <image_settings2>\n");

return -1;
}

src_base = imread(argv[1], 1);
src_test1 = imread(argv[2], 1);
src_test2 = imread(argv[3], 1);

3. Convert them to HSV format:

cvtColor(src_base, hsv_base, CV_BGR2HSV);
cvtColor(src_test1, hsv_test1, CV_BGR2HSV);
cvtColor(src_test2, hsv_test2, CV_BGR2HSV);

4. Also, create an image of half the base image (in HSV format):

hsv_half_down = hsv_base(Range(hsv_base.rows/2, hsv_base.rows - 1), Range(0, hsv_base.cols - 1));

5. Initialize the arguments to calculate the histograms (bins, ranges and channels H and S).

int h_bins = 50; int s_bins = 32;
int histSize[] = { h_bins, s_bins };

float h_ranges[] = { 0, 256 };
float s_ranges[] = { 0, 180 };

const float* ranges[] = { h_ranges, s_ranges };

int channels[] = { 0, 1 };

6. Create the MatND objects to store the histograms:

MatND hist_base;
MatND hist_half_down;
MatND hist_test1;
MatND hist_test2;

7. Calculate the Histograms for the base image, the 2 test images and the half-down base image:

calcHist(&hsv_base, 1, channels, Mat(), hist_base, 2, histSize, ranges, true, false);
normalize(hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat());

calcHist(&hsv_half_down, 1, channels, Mat(), hist_half_down, 2, histSize, ranges, true, false);
normalize(hist_half_down, hist_half_down, 0, 1, NORM_MINMAX, -1, Mat());

calcHist(&hsv_test1, 1, channels, Mat(), hist_test1, 2, histSize, ranges, true, false);
normalize(hist_test1, hist_test1, 0, 1, NORM_MINMAX, -1, Mat());

170 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

calcHist(&hsv_test2, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false);
normalize(hist_test2, hist_test2, 0, 1, NORM_MINMAX, -1, Mat());

8. Apply sequentially the 4 comparison methods between the histogram of the base image (hist_base) and the other
histograms:

for(int i = 0; i < 4; i++)
{ int compare_method = i;

double base_base = compareHist(hist_base, hist_base, compare_method);
double base_half = compareHist(hist_base, hist_half_down, compare_method);
double base_test1 = compareHist(hist_base, hist_test1, compare_method);
double base_test2 = compareHist(hist_base, hist_test2, compare_method);

printf(" Method [%d] Perfect, Base-Half, Base-Test(1), Base-Test(2) : %f, %f, %f, %f \n", i, base_base, base_half , base_test1, base_test2);
}

Results

1. We use as input the following images:

where the first one is the base (to be compared to the others), the other 2 are the test images. We will also
compare the first image with respect to itself and with respect of half the base image.

2. We should expect a perfect match when we compare the base image histogram with itself. Also, compared with
the histogram of half the base image, it should present a high match since both are from the same source. For the
other two test images, we can observe that they have very different lighting conditions, so the matching should
not be very good:

3. Here the numeric results:

Method Base - Base Base - Half Base - Test 1 Base - Test 2
Correlation 1.000000 0.930766 0.182073 0.120447
Chi-square 0.000000 4.940466 21.184536 49.273437
Intersection 24.391548 14.959809 3.889029 5.775088
Bhattacharyya 0.000000 0.222609 0.646576 0.801869

For the Correlation and Intersection methods, the higher the metric, the more accurate the match. As
we can see, the match base-base is the highest of all as expected. Also we can observe that the match
base-half is the second best match (as we predicted). For the other two metrics, the less the result, the
better the match. We can observe that the matches between the test 1 and test 2 with respect to the base
are worse, which again, was expected.

3.17. Histogram Comparison 171

The OpenCV Tutorials, Release 2.3

3.18 Back Projection

Goal

In this tutorial you will learn:

• What is Back Projection and why it is useful

• How to use the OpenCV function calcBackProject to calculate Back Projection

• How to mix different channels of an image by using the OpenCV function mixChannels

Theory

What is Back Projection?

• Back Projection is a way of recording how well the pixels of a given image fit the distribution of pixels in a
histogram model.

• To make it simpler: For Back Projection, you calculate the histogram model of a feature and then use it to find
this feature in an image.

• Application example: If you have a histogram of flesh color (say, a Hue-Saturation histogram), then you can
use it to find flesh color areas in an image:

How does it work?

• We explain this by using the skin example:

• Let’s say you have gotten a skin histogram (Hue-Saturation) based on the image below. The histogram besides
is going to be our model histogram (which we know represents a sample of skin tonality). You applied some
mask to capture only the histogram of the skin area:

• Now, let’s imagine that you get another hand image (Test Image) like the one below: (with its respective his-
togram):

172 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/imgproc_histograms.html?#calcBackProject
http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?#mixChannels

The OpenCV Tutorials, Release 2.3

• What we want to do is to use our model histogram (that we know represents a skin tonality) to detect skin areas
in our Test Image. Here are the steps

1. In each pixel of our Test Image (i.e. p(i, j)), collect the data and find the correspondent bin location for
that pixel (i.e. (hi,j, si,j)).

2. Lookup the model histogram in the correspondent bin - (hi,j, si,j) - and read the bin value.

3. Store this bin value in a new image (BackProjection). Also, you may consider to normalize the model
histogram first, so the output for the Test Image can be visible for you.

4. Applying the steps above, we get the following BackProjection image for our Test Image:

5. In terms of statistics, the values stored in BackProjection represent the probability that a pixel in Test
Image belongs to a skin area, based on the model histogram that we use. For instance in our Test image,
the brighter areas are more probable to be skin area (as they actually are), whereas the darker areas have
less probability (notice that these “dark” areas belong to surfaces that have some shadow on it, which in
turns affects the detection).

Code

• What does this program do?

– Loads an image

3.18. Back Projection 173

The OpenCV Tutorials, Release 2.3

– Convert the original to HSV format and separate only Hue channel to be used for the Histogram (using the
OpenCV function mixChannels)

– Let the user to enter the number of bins to be used in the calculation of the histogram.

– Calculate the histogram (and update it if the bins change) and the backprojection of the same image.

– Display the backprojection and the histogram in windows.

• Downloadable code:

1. Click here for the basic version (explained in this tutorial).

2. For stuff slightly fancier (using H-S histograms and floodFill to define a mask for the skin area) you can
check the improved demo

3. ...or you can always check out the classical camshiftdemo in samples.

• Code at glance:

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"

#include <iostream>

using namespace cv;
using namespace std;

/// Global Variables
Mat src; Mat hsv; Mat hue;
int bins = 25;

/// Function Headers
void Hist_and_Backproj(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Read the image
src = imread(argv[1], 1);
/// Transform it to HSV
cvtColor(src, hsv, CV_BGR2HSV);

/// Use only the Hue value
hue.create(hsv.size(), hsv.depth());
int ch[] = { 0, 0 };
mixChannels(&hsv, 1, &hue, 1, ch, 1);

/// Create Trackbar to enter the number of bins
char* window_image = "Source image";
namedWindow(window_image, CV_WINDOW_AUTOSIZE);
createTrackbar("* Hue bins: ", window_image, &bins, 180, Hist_and_Backproj);
Hist_and_Backproj(0, 0);

/// Show the image
imshow(window_image, src);

/// Wait until user exits the program
waitKey(0);
return 0;

}

174 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?#mixChannels
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/Histograms_Matching/calcBackProject_Demo1.cpp
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/Histograms_Matching/calcBackProject_Demo2.cpp
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/camshiftdemo.cpp

The OpenCV Tutorials, Release 2.3

/**
* @function Hist_and_Backproj

* @brief Callback to Trackbar

*/
void Hist_and_Backproj(int, void*)
{

MatND hist;
int histSize = MAX(bins, 2);
float hue_range[] = { 0, 180 };
const float* ranges = { hue_range };

/// Get the Histogram and normalize it
calcHist(&hue, 1, 0, Mat(), hist, 1, &histSize, &ranges, true, false);
normalize(hist, hist, 0, 255, NORM_MINMAX, -1, Mat());

/// Get Backprojection
MatND backproj;
calcBackProject(&hue, 1, 0, hist, backproj, &ranges, 1, true);

/// Draw the backproj
imshow("BackProj", backproj);

/// Draw the histogram
int w = 400; int h = 400;
int bin_w = cvRound((double) w / histSize);
Mat histImg = Mat::zeros(w, h, CV_8UC3);

for(int i = 0; i < bins; i ++)
{ rectangle(histImg, Point(i*bin_w, h), Point((i+1)*bin_w, h - cvRound(hist.at<float>(i)*h/255.0)), Scalar(0, 0, 255), -1); }

imshow("Histogram", histImg);
}

Explanation

1. Declare the matrices to store our images and initialize the number of bins to be used by our histogram:

Mat src; Mat hsv; Mat hue;
int bins = 25;

2. Read the input image and transform it to HSV format:

src = imread(argv[1], 1);
cvtColor(src, hsv, CV_BGR2HSV);

3. For this tutorial, we will use only the Hue value for our 1-D histogram (check out the fancier code in the links
above if you want to use the more standard H-S histogram, which yields better results):

hue.create(hsv.size(), hsv.depth());
int ch[] = { 0, 0 };
mixChannels(&hsv, 1, &hue, 1, ch, 1);

as you see, we use the function http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?#mixChannelsmixChannels
to get only the channel 0 (Hue) from the hsv image. It gets the following parameters:

• &hsv: The source array from which the channels will be copied

• 1: The number of source arrays

3.18. Back Projection 175

http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?#mixChannelsmixChannels

The OpenCV Tutorials, Release 2.3

• &hue: The destination array of the copied channels

• 1: The number of destination arrays

• ch[] = {0,0}: The array of index pairs indicating how the channels are copied. In this case, the Hue(0)
channel of &hsv is being copied to the 0 channel of &hue (1-channel)

• 1: Number of index pairs

4. Create a Trackbar for the user to enter the bin values. Any change on the Trackbar means a call to the
Hist_and_Backproj callback function.

char* window_image = "Source image";
namedWindow(window_image, CV_WINDOW_AUTOSIZE);
createTrackbar("* Hue bins: ", window_image, &bins, 180, Hist_and_Backproj);
Hist_and_Backproj(0, 0);

5. Show the image and wait for the user to exit the program:

imshow(window_image, src);

waitKey(0);
return 0;

6. Hist_and_Backproj function: Initialize the arguments needed for calcHist. The number of bins comes from
the Trackbar:

void Hist_and_Backproj(int, void*)
{

MatND hist;
int histSize = MAX(bins, 2);
float hue_range[] = { 0, 180 };
const float* ranges = { hue_range };

7. Calculate the Histogram and normalize it to the range [0, 255]

calcHist(&hue, 1, 0, Mat(), hist, 1, &histSize, &ranges, true, false);
normalize(hist, hist, 0, 255, NORM_MINMAX, -1, Mat());

8. Get the Backprojection of the same image by calling the function calcBackProject

MatND backproj;
calcBackProject(&hue, 1, 0, hist, backproj, &ranges, 1, true);

all the arguments are known (the same as used to calculate the histogram), only we add the backproj matrix,
which will store the backprojection of the source image (&hue)

9. Display backproj:

imshow("BackProj", backproj);

10. Draw the 1-D Hue histogram of the image:

int w = 400; int h = 400;
int bin_w = cvRound((double) w / histSize);
Mat histImg = Mat::zeros(w, h, CV_8UC3);

for(int i = 0; i < bins; i ++)
{ rectangle(histImg, Point(i*bin_w, h), Point((i+1)*bin_w, h - cvRound(hist.at<float>(i)*h/255.0)), Scalar(0, 0, 255), -1); }

imshow("Histogram", histImg);

176 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/imgproc_histograms.html?#calcHist
http://opencv.willowgarage.com/documentation/cpp/imgproc_histograms.html?#calcBackProject

The OpenCV Tutorials, Release 2.3

Results

1. Here are the output by using a sample image (guess what? Another hand). You can play with the bin values
and you will observe how it affects the results:

3.19 Template Matching

Goal

In this tutorial you will learn how to:

• Use the OpenCV function matchTemplate to search for matches between an image patch and an input image

• Use the OpenCV function minMaxLoc to find the maximum and minimum values (as well as their positions) in
a given array.

Theory

What is template matching?

Template matching is a technique for finding areas of an image that match (are similar) to a template image (patch).

How does it work?

• We need two primary components:

1. Source image (I): The image in which we expect to find a match to the template image

2. Template image (T): The patch image which will be compared to the template image

our goal is to detect the highest matching area:

3.19. Template Matching 177

http://opencv.willowgarage.com/documentation/cpp/imgproc_object_detection.html?#matchTemplate
http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?#minMaxLoc

The OpenCV Tutorials, Release 2.3

• To identify the matching area, we have to compare the template image against the source image by sliding it:

• By sliding, we mean moving the patch one pixel at a time (left to right, up to down). At each location, a metric
is calculated so it represents how “good” or “bad” the match at that location is (or how similar the patch is to
that particular area of the source image).

• For each location of T over I, you store the metric in the result matrix (R). Each location (x, y) in R contains
the match metric:

178 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

the image above is the result R of sliding the patch with a metric TM_CCORR_NORMED. The brightest
locations indicate the highest matches. As you can see, the location marked by the red circle is probably the
one with the highest value, so that location (the rectangle formed by that point as a corner and width and height
equal to the patch image) is considered the match.

• In practice, we use the function minMaxLoc to locate the highest value (or lower, depending of the type of
matching method) in the R matrix.

Which are the matching methods available in OpenCV?

Good question. OpenCV implements Template matching in the function matchTemplate. The available methods are
6:

1. method=CV_TM_SQDIFF

R(x, y) =
∑
x ′,y ′

(T(x ′, y ′) − I(x+ x ′, y+ y ′))2

2. method=CV_TM_SQDIFF_NORMED

R(x, y) =

∑
x ′,y ′(T(x ′, y ′) − I(x+ x ′, y+ y ′))2√∑

x ′,y ′ T(x ′, y ′)2 ·
∑
x ′,y ′ I(x+ x ′, y+ y ′)2

3. method=CV_TM_CCORR

R(x, y) =
∑
x ′,y ′

(T(x ′, y ′) · I(x+ x ′, y+ y ′))

4. method=CV_TM_CCORR_NORMED

R(x, y) =

∑
x ′,y ′(T(x ′, y ′) · I ′(x+ x ′, y+ y ′))√∑

x ′,y ′ T(x ′, y ′)2 ·
∑
x ′,y ′ I(x+ x ′, y+ y ′)2

3.19. Template Matching 179

http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?#minMaxLoc
http://opencv.willowgarage.com/documentation/cpp/imgproc_object_detection.html?#matchTemplate

The OpenCV Tutorials, Release 2.3

5. method=CV_TM_CCOEFF

R(x, y) =
∑
x ′,y ′

(T ′(x ′, y ′) · I(x+ x ′, y+ y ′))

where

T ′(x ′, y ′) = T(x ′, y ′) − 1/(w · h) ·
∑
x ′′,y ′′ T(x ′′, y ′′)

I ′(x+ x ′, y+ y ′) = I(x+ x ′, y+ y ′) − 1/(w · h) ·
∑
x ′′,y ′′ I(x+ x ′′, y+ y ′′)

6. method=CV_TM_CCOEFF_NORMED

R(x, y) =

∑
x ′,y ′(T ′(x ′, y ′) · I ′(x+ x ′, y+ y ′))√∑

x ′,y ′ T ′(x ′, y ′)2 ·
∑
x ′,y ′ I ′(x+ x ′, y+ y ′)2

Code

• What does this program do?

– Loads an input image and a image patch (template)

– Perform a template matching procedure by using the OpenCV function matchTemplate with any of the
6 matching methods described before. The user can choose the method by entering its selection in the
Trackbar.

– Normalize the output of the matching procedure

– Localize the location with higher matching probability

– Draw a rectangle around the area corresponding to the highest match

• Downloadable code: Click here

• Code at glance:

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>

using namespace std;
using namespace cv;

/// Global Variables
Mat img; Mat templ; Mat result;
char* image_window = "Source Image";
char* result_window = "Result window";

int match_method;
int max_Trackbar = 5;

/// Function Headers
void MatchingMethod(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Load image and template
img = imread(argv[1], 1);

180 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/imgproc_object_detection.html?#matchTemplate
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/Histograms_Matching/MatchTemplate_Demo.cpp

The OpenCV Tutorials, Release 2.3

templ = imread(argv[2], 1);

/// Create windows
namedWindow(image_window, CV_WINDOW_AUTOSIZE);
namedWindow(result_window, CV_WINDOW_AUTOSIZE);

/// Create Trackbar
char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED";
createTrackbar(trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod);

MatchingMethod(0, 0);

waitKey(0);
return 0;

}

/**
* @function MatchingMethod

* @brief Trackbar callback

*/
void MatchingMethod(int, void*)
{

/// Source image to display
Mat img_display;
img.copyTo(img_display);

/// Create the result matrix
int result_cols = img.cols - templ.cols + 1;
int result_rows = img.rows - templ.rows + 1;

result.create(result_cols, result_rows, CV_32FC1);

/// Do the Matching and Normalize
matchTemplate(img, templ, result, match_method);
normalize(result, result, 0, 1, NORM_MINMAX, -1, Mat());

/// Localizing the best match with minMaxLoc
double minVal; double maxVal; Point minLoc; Point maxLoc;
Point matchLoc;

minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc, Mat());

/// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
if(match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED)
{ matchLoc = minLoc; }

else
{ matchLoc = maxLoc; }

/// Show me what you got
rectangle(img_display, matchLoc, Point(matchLoc.x + templ.cols , matchLoc.y + templ.rows), Scalar::all(0), 2, 8, 0);
rectangle(result, matchLoc, Point(matchLoc.x + templ.cols , matchLoc.y + templ.rows), Scalar::all(0), 2, 8, 0);

imshow(image_window, img_display);
imshow(result_window, result);

return;
}

3.19. Template Matching 181

The OpenCV Tutorials, Release 2.3

Explanation

1. Declare some global variables, such as the image, template and result matrices, as well as the match method and
the window names:

Mat img; Mat templ; Mat result;
char* image_window = "Source Image";
char* result_window = "Result window";

int match_method;
int max_Trackbar = 5;

2. Load the source image and template:

img = imread(argv[1], 1);
templ = imread(argv[2], 1);

3. Create the windows to show the results:

namedWindow(image_window, CV_WINDOW_AUTOSIZE);
namedWindow(result_window, CV_WINDOW_AUTOSIZE);

4. Create the Trackbar to enter the kind of matching method to be used. When a change is detected the callback
function MatchingMethod is called.

char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED";
createTrackbar(trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod);

5. Wait until user exits the program.

waitKey(0);
return 0;

6. Let’s check out the callback function. First, it makes a copy of the source image:

Mat img_display;
img.copyTo(img_display);

7. Next, it creates the result matrix that will store the matching results for each template location. Observe in detail
the size of the result matrix (which matches all possible locations for it)

int result_cols = img.cols - templ.cols + 1;
int result_rows = img.rows - templ.rows + 1;

result.create(result_cols, result_rows, CV_32FC1);

8. Perform the template matching operation:

matchTemplate(img, templ, result, match_method);

the arguments are naturally the input image I, the template T, the result R and the match_method (given by the
Trackbar)

9. We normalize the results:

normalize(result, result, 0, 1, NORM_MINMAX, -1, Mat());

10. We localize the minimum and maximum values in the result matrix R by using minMaxLoc.

double minVal; double maxVal; Point minLoc; Point maxLoc;
Point matchLoc;

182 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?#minMaxLoc

The OpenCV Tutorials, Release 2.3

minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc, Mat());

the function calls as arguments:

• result: The source array

• &minVal and &maxVal: Variables to save the minimum and maximum values in result

• &minLoc and &maxLoc: The Point locations of the minimum and maximum values in the array.

• Mat(): Optional mask

11. For the first two methods (CV_SQDIFF and CV_SQDIFF_NORMED) the best match are the lowest values.
For all the others, higher values represent better matches. So, we save the corresponding value in the matchLoc
variable:

if(match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED)
{ matchLoc = minLoc; }

else
{ matchLoc = maxLoc; }

12. Display the source image and the result matrix. Draw a rectangle around the highest possible matching area:

rectangle(img_display, matchLoc, Point(matchLoc.x + templ.cols , matchLoc.y + templ.rows), Scalar::all(0), 2, 8, 0);
rectangle(result, matchLoc, Point(matchLoc.x + templ.cols , matchLoc.y + templ.rows), Scalar::all(0), 2, 8, 0);

imshow(image_window, img_display);
imshow(result_window, result);

Results

1. Testing our program with an input image such as:

and a template image:

3.19. Template Matching 183

The OpenCV Tutorials, Release 2.3

2. Generate the following result matrices (first row are the standard methods SQDIFF, CCORR and CCOEFF,
second row are the same methods in its normalized version). In the first column, the darkest is the better match,
for the other two columns, the brighter a location, the higher the match.

3. The right match is shown below (black rectangle around the face of the guy at the right). Notice that CCORR
and CCDEFF gave erroneous best matches, however their normalized version did it right, this may be due to the
fact that we are only considering the “highest match” and not the other possible high matches.

184 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

3.20 Finding contours in your image

Goal

In this tutorial you will learn how to:

• Use the OpenCV function findContours

• Use the OpenCV function drawContours

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

3.20. Finding contours in your image 185

http://opencv.willowgarage.com/documentation/cpp/imgproc_structural_analysis_and_shape_descriptors.html#cv-findcontours
http://opencv.willowgarage.com/documentation/cpp/imgproc_structural_analysis_and_shape_descriptors.html#cv-drawcontours
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ShapeDescriptors/findContours_demo.cpp

The OpenCV Tutorials, Release 2.3

Mat src; Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);

/// Function header
void thresh_callback(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Load source image and convert it to gray
src = imread(argv[1], 1);

/// Convert image to gray and blur it
cvtColor(src, src_gray, CV_BGR2GRAY);
blur(src_gray, src_gray, Size(3,3));

/// Create Window
char* source_window = "Source";
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, src);

createTrackbar(" Canny thresh:", "Source", &thresh, max_thresh, thresh_callback);
thresh_callback(0, 0);

waitKey(0);
return(0);

}

/** @function thresh_callback */
void thresh_callback(int, void*)
{

Mat canny_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;

/// Detect edges using canny
Canny(src_gray, canny_output, thresh, thresh*2, 3);
/// Find contours
findContours(canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));

/// Draw contours
Mat drawing = Mat::zeros(canny_output.size(), CV_8UC3);
for(int i = 0; i< contours.size(); i++)

{
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255));
drawContours(drawing, contours, i, color, 2, 8, hierarchy, 0, Point());

}

/// Show in a window
namedWindow("Contours", CV_WINDOW_AUTOSIZE);
imshow("Contours", drawing);

}

186 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

Explanation

Result

1. Here it is:

3.21 Convex Hull

Goal

In this tutorial you will learn how to:

• Use the OpenCV function convexHull

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

Mat src; Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);

/// Function header

3.21. Convex Hull 187

http://opencv.willowgarage.com/documentation/cpp/imgproc_structural_analysis_and_shape_descriptors.html#cv-convexhull
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ShapeDescriptors/hull_demo.cpp

The OpenCV Tutorials, Release 2.3

void thresh_callback(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Load source image and convert it to gray
src = imread(argv[1], 1);

/// Convert image to gray and blur it
cvtColor(src, src_gray, CV_BGR2GRAY);
blur(src_gray, src_gray, Size(3,3));

/// Create Window
char* source_window = "Source";
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, src);

createTrackbar(" Threshold:", "Source", &thresh, max_thresh, thresh_callback);
thresh_callback(0, 0);

waitKey(0);
return(0);

}

/** @function thresh_callback */
void thresh_callback(int, void*)
{

Mat src_copy = src.clone();
Mat threshold_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;

/// Detect edges using Threshold
threshold(src_gray, threshold_output, thresh, 255, THRESH_BINARY);

/// Find contours
findContours(threshold_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));

/// Find the convex hull object for each contour
vector<vector<Point> >hull(contours.size());
for(int i = 0; i < contours.size(); i++)

{ convexHull(Mat(contours[i]), hull[i], false); }

/// Draw contours + hull results
Mat drawing = Mat::zeros(threshold_output.size(), CV_8UC3);
for(int i = 0; i< contours.size(); i++)

{
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255));
drawContours(drawing, contours, i, color, 1, 8, vector<Vec4i>(), 0, Point());
drawContours(drawing, hull, i, color, 1, 8, vector<Vec4i>(), 0, Point());

}

/// Show in a window
namedWindow("Hull demo", CV_WINDOW_AUTOSIZE);
imshow("Hull demo", drawing);

}

188 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

Explanation

Result

1. Here it is:

3.22 Creating Bounding boxes and circles for contours

Goal

In this tutorial you will learn how to:

• Use the OpenCV function boundingRect

• Use the OpenCV function minEnclosingCircle

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

Mat src; Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);

3.22. Creating Bounding boxes and circles for contours 189

http://opencv.willowgarage.com/documentation/cpp/imgproc_structural_analysis_and_shape_descriptors.html#cv-boundingrect
http://opencv.willowgarage.com/documentation/cpp/imgproc_structural_analysis_and_shape_descriptors.html#cv-minenclosingcircle
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ShapeDescriptors/generalContours_demo1.cpp

The OpenCV Tutorials, Release 2.3

/// Function header
void thresh_callback(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Load source image and convert it to gray
src = imread(argv[1], 1);

/// Convert image to gray and blur it
cvtColor(src, src_gray, CV_BGR2GRAY);
blur(src_gray, src_gray, Size(3,3));

/// Create Window
char* source_window = "Source";
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, src);

createTrackbar(" Threshold:", "Source", &thresh, max_thresh, thresh_callback);
thresh_callback(0, 0);

waitKey(0);
return(0);

}

/** @function thresh_callback */
void thresh_callback(int, void*)
{

Mat threshold_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;

/// Detect edges using Threshold
threshold(src_gray, threshold_output, thresh, 255, THRESH_BINARY);
/// Find contours
findContours(threshold_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));

/// Approximate contours to polygons + get bounding rects and circles
vector<vector<Point> > contours_poly(contours.size());
vector<Rect> boundRect(contours.size());
vector<Point2f>center(contours.size());
vector<float>radius(contours.size());

for(int i = 0; i < contours.size(); i++)
{ approxPolyDP(Mat(contours[i]), contours_poly[i], 3, true);
boundRect[i] = boundingRect(Mat(contours_poly[i]));
minEnclosingCircle(contours_poly[i], center[i], radius[i]);

}

/// Draw polygonal contour + bonding rects + circles
Mat drawing = Mat::zeros(threshold_output.size(), CV_8UC3);
for(int i = 0; i< contours.size(); i++)

{
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255));
drawContours(drawing, contours_poly, i, color, 1, 8, vector<Vec4i>(), 0, Point());
rectangle(drawing, boundRect[i].tl(), boundRect[i].br(), color, 2, 8, 0);
circle(drawing, center[i], (int)radius[i], color, 2, 8, 0);

190 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

}

/// Show in a window
namedWindow("Contours", CV_WINDOW_AUTOSIZE);
imshow("Contours", drawing);

}

Explanation

Result

1. Here it is:

3.23 Creating Bounding rotated boxes and ellipses for contours

Goal

In this tutorial you will learn how to:

• Use the OpenCV function minAreaRect

• Use the OpenCV function fitEllipse

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

3.23. Creating Bounding rotated boxes and ellipses for contours 191

http://opencv.willowgarage.com/documentation/cpp/imgproc_structural_analysis_and_shape_descriptors.html#cv-minarearect
http://opencv.willowgarage.com/documentation/cpp/imgproc_structural_analysis_and_shape_descriptors.html#cv-fitellipse
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ShapeDescriptors/generalContours_demo2.cpp

The OpenCV Tutorials, Release 2.3

using namespace cv;
using namespace std;

Mat src; Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);

/// Function header
void thresh_callback(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Load source image and convert it to gray
src = imread(argv[1], 1);

/// Convert image to gray and blur it
cvtColor(src, src_gray, CV_BGR2GRAY);
blur(src_gray, src_gray, Size(3,3));

/// Create Window
char* source_window = "Source";
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, src);

createTrackbar(" Threshold:", "Source", &thresh, max_thresh, thresh_callback);
thresh_callback(0, 0);

waitKey(0);
return(0);

}

/** @function thresh_callback */
void thresh_callback(int, void*)
{

Mat threshold_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;

/// Detect edges using Threshold
threshold(src_gray, threshold_output, thresh, 255, THRESH_BINARY);
/// Find contours
findContours(threshold_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));

/// Find the rotated rectangles and ellipses for each contour
vector<RotatedRect> minRect(contours.size());
vector<RotatedRect> minEllipse(contours.size());

for(int i = 0; i < contours.size(); i++)
{ minRect[i] = minAreaRect(Mat(contours[i]));

if(contours[i].size() > 5)
{ minEllipse[i] = fitEllipse(Mat(contours[i])); }

}

/// Draw contours + rotated rects + ellipses
Mat drawing = Mat::zeros(threshold_output.size(), CV_8UC3);
for(int i = 0; i< contours.size(); i++)

192 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.3

{
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255));
// contour
drawContours(drawing, contours, i, color, 1, 8, vector<Vec4i>(), 0, Point());
// ellipse
ellipse(drawing, minEllipse[i], color, 2, 8);
// rotated rectangle
Point2f rect_points[4]; minRect[i].points(rect_points);
for(int j = 0; j < 4; j++)

line(drawing, rect_points[j], rect_points[(j+1)%4], color, 1, 8);
}

/// Show in a window
namedWindow("Contours", CV_WINDOW_AUTOSIZE);
imshow("Contours", drawing);

}

Explanation

Result

1. Here it is:

3.24 Image Moments

Goal

In this tutorial you will learn how to:

• Use the OpenCV function moments

• Use the OpenCV function contourArea

• Use the OpenCV function arcLength

3.24. Image Moments 193

http://opencv.willowgarage.com/documentation/cpp/imgproc_structural_analysis_and_shape_descriptors.html#cv-moments
http://opencv.willowgarage.com/documentation/cpp/imgproc_structural_analysis_and_shape_descriptors.html#cv-contourarea
http://opencv.willowgarage.com/documentation/cpp/imgproc_structural_analysis_and_shape_descriptors.html#cv-arclength

The OpenCV Tutorials, Release 2.3

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

Mat src; Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);

/// Function header
void thresh_callback(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Load source image and convert it to gray
src = imread(argv[1], 1);

/// Convert image to gray and blur it
cvtColor(src, src_gray, CV_BGR2GRAY);
blur(src_gray, src_gray, Size(3,3));

/// Create Window
char* source_window = "Source";
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, src);

createTrackbar(" Canny thresh:", "Source", &thresh, max_thresh, thresh_callback);
thresh_callback(0, 0);

waitKey(0);
return(0);

}

/** @function thresh_callback */
void thresh_callback(int, void*)
{

Mat canny_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;

/// Detect edges using canny
Canny(src_gray, canny_output, thresh, thresh*2, 3);
/// Find contours
findContours(canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));

/// Get the moments

194 Chapter 3. imgproc module. Image Processing

https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ShapeDescriptors/moments_demo.cpp

The OpenCV Tutorials, Release 2.3

vector<Moments> mu(contours.size());
for(int i = 0; i < contours.size(); i++)

{ mu[i] = moments(contours[i], false); }

/// Get the mass centers:
vector<Point2f> mc(contours.size());
for(int i = 0; i < contours.size(); i++)

{ mc[i] = Point2f(mu[i].m10/mu[i].m00 , mu[i].m01/mu[i].m00); }

/// Draw contours
Mat drawing = Mat::zeros(canny_output.size(), CV_8UC3);
for(int i = 0; i< contours.size(); i++)

{
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255));
drawContours(drawing, contours, i, color, 2, 8, hierarchy, 0, Point());
circle(drawing, mc[i], 4, color, -1, 8, 0);

}

/// Show in a window
namedWindow("Contours", CV_WINDOW_AUTOSIZE);
imshow("Contours", drawing);

/// Calculate the area with the moments 00 and compare with the result of the OpenCV function
printf("\t Info: Area and Contour Length \n");
for(int i = 0; i< contours.size(); i++)

{
printf(" * Contour[%d] - Area (M_00) = %.2f - Area OpenCV: %.2f - Length: %.2f \n", i, mu[i].m00, contourArea(contours[i]), arcLength(contours[i], true));
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255));
drawContours(drawing, contours, i, color, 2, 8, hierarchy, 0, Point());
circle(drawing, mc[i], 4, color, -1, 8, 0);

}
}

Explanation

Result

1. Here it is:

3.24. Image Moments 195

The OpenCV Tutorials, Release 2.3

3.25 Point Polygon Test

Goal

In this tutorial you will learn how to:

• Use the OpenCV function pointPolygonTest

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

/** @function main */
int main(int argc, char** argv)
{

/// Create an image
const int r = 100;
Mat src = Mat::zeros(Size(4*r, 4*r), CV_8UC1);

/// Create a sequence of points to make a contour:
vector<Point2f> vert(6);

vert[0] = Point(1.5*r, 1.34*r);
vert[1] = Point(1*r, 2*r);
vert[2] = Point(1.5*r, 2.866*r);
vert[3] = Point(2.5*r, 2.866*r);
vert[4] = Point(3*r, 2*r);
vert[5] = Point(2.5*r, 1.34*r);

/// Draw it in src
for(int j = 0; j < 6; j++)

{ line(src, vert[j], vert[(j+1)%6], Scalar(255), 3, 8); }

/// Get the contours
vector<vector<Point> > contours; vector<Vec4i> hierarchy;
Mat src_copy = src.clone();

findContours(src_copy, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE);

/// Calculate the distances to the contour
Mat raw_dist(src.size(), CV_32FC1);

for(int j = 0; j < src.rows; j++)
{ for(int i = 0; i < src.cols; i++)

{ raw_dist.at<float>(j,i) = pointPolygonTest(contours[0], Point2f(i,j), true); }

196 Chapter 3. imgproc module. Image Processing

http://opencv.willowgarage.com/documentation/cpp/imgproc_structural_analysis_and_shape_descriptors.html#cv-pointpolygontest
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ShapeDescriptors/pointPolygonTest_demo.cpp

The OpenCV Tutorials, Release 2.3

}

double minVal; double maxVal;
minMaxLoc(raw_dist, &minVal, &maxVal, 0, 0, Mat());
minVal = abs(minVal); maxVal = abs(maxVal);

/// Depicting the distances graphically
Mat drawing = Mat::zeros(src.size(), CV_8UC3);

for(int j = 0; j < src.rows; j++)
{ for(int i = 0; i < src.cols; i++)

{
if(raw_dist.at<float>(j,i) < 0)

{ drawing.at<Vec3b>(j,i)[0] = 255 - (int) abs(raw_dist.at<float>(j,i))*255/minVal; }
else if(raw_dist.at<float>(j,i) > 0)
{ drawing.at<Vec3b>(j,i)[2] = 255 - (int) raw_dist.at<float>(j,i)*255/maxVal; }

else
{ drawing.at<Vec3b>(j,i)[0] = 255; drawing.at<Vec3b>(j,i)[1] = 255; drawing.at<Vec3b>(j,i)[2] = 255; }

}
}

/// Create Window and show your results
char* source_window = "Source";
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, src);
namedWindow("Distance", CV_WINDOW_AUTOSIZE);
imshow("Distance", drawing);

waitKey(0);
return(0);

}

Explanation

Result

1. Here it is:

3.25. Point Polygon Test 197

The OpenCV Tutorials, Release 2.3

198 Chapter 3. imgproc module. Image Processing

CHAPTER

FOUR

HIGHGUI MODULE. HIGH LEVEL GUI
AND MEDIA

This section contains valuable tutorials about how to read/save your image/video files and how to use the built-in
graphical user interface of the library.

•
Title: Adding a Trackbar to our applications!
Compatibility: > OpenCV 2.0
We will learn how to add a Trackbar to our applications

199

The OpenCV Tutorials, Release 2.3

4.1 Adding a Trackbar to our applications!

• In the previous tutorials (about linear blending and the brightness and contrast adjustments) you might have
noted that we needed to give some input to our programs, such as α and beta. We accomplished that by
entering this data using the Terminal

• Well, it is time to use some fancy GUI tools. OpenCV provides some GUI utilities (highgui.h) for you. An
example of this is a Trackbar

• In this tutorial we will just modify our two previous programs so that they get the input information from the
trackbar.

Goals

In this tutorial you will learn how to:

• Add a Trackbar in an OpenCV window by using createTrackbar

Code

Let’s modify the program made in the tutorial Adding (blending) two images using OpenCV . We will let the user enter
the α value by using the Trackbar.

#include <cv.h>
#include <highgui.h>

using namespace cv;

/// Global Variables
const int alpha_slider_max = 100;
int alpha_slider;
double alpha;
double beta;

/// Matrices to store images
Mat src1;
Mat src2;
Mat dst;

/**
* @function on_trackbar

* @brief Callback for trackbar

*/
void on_trackbar(int, void*)
{
alpha = (double) alpha_slider/alpha_slider_max ;
beta = (1.0 - alpha);

addWeighted(src1, alpha, src2, beta, 0.0, dst);

imshow("Linear Blend", dst);

200 Chapter 4. highgui module. High Level GUI and Media

http://opencv.willowgarage.com/documentation/cpp/user_interface.html

The OpenCV Tutorials, Release 2.3

}

int main(int argc, char** argv)
{
/// Read image (same size, same type)
src1 = imread("../../images/LinuxLogo.jpg");
src2 = imread("../../images/WindowsLogo.jpg");

if(!src1.data) { printf("Error loading src1 \n"); return -1; }
if(!src2.data) { printf("Error loading src2 \n"); return -1; }

/// Initialize values
alpha_slider = 0;

/// Create Windows
namedWindow("Linear Blend", 1);

/// Create Trackbars
char TrackbarName[50];
sprintf(TrackbarName, "Alpha x %d", alpha_slider_max);

createTrackbar(TrackbarName, "Linear Blend", &alpha_slider, alpha_slider_max, on_trackbar);

/// Show some stuff
on_trackbar(alpha_slider, 0);

/// Wait until user press some key
waitKey(0);
return 0;
}

Explanation

We only analyze the code that is related to Trackbar:

1. First, we load 02 images, which are going to be blended.

src1 = imread("../../images/LinuxLogo.jpg");
src2 = imread("../../images/WindowsLogo.jpg");

2. To create a trackbar, first we have to create the window in which it is going to be located. So:

namedWindow("Linear Blend", 1);

3. Now we can create the Trackbar:

createTrackbar(TrackbarName, "Linear Blend", &alpha_slider, alpha_slider_max, on_trackbar);

Note the following:

• Our Trackbar has a label TrackbarName

• The Trackbar is located in the window named “Linear Blend”

• The Trackbar values will be in the range from 0 to alpha_slider_max (the minimum limit is always zero).

• The numerical value of Trackbar is stored in alpha_slider

• Whenever the user moves the Trackbar, the callback function on_trackbar is called

4.1. Adding a Trackbar to our applications! 201

The OpenCV Tutorials, Release 2.3

4. Finally, we have to define the callback function on_trackbar

void on_trackbar(int, void*)
{
alpha = (double) alpha_slider/alpha_slider_max ;
beta = (1.0 - alpha);

addWeighted(src1, alpha, src2, beta, 0.0, dst);

imshow("Linear Blend", dst);
}

Note that:

• We use the value of alpha_slider (integer) to get a double value for alpha.

• alpha_slider is updated each time the trackbar is displaced by the user.

• We define src1, src2, dist, alpha, alpha_slider and beta as global variables, so they can be used everywhere.

Result

• Our program produces the following output:

• As a manner of practice, you can also add 02 trackbars for the program made in Changing the contrast and
brightness of an image!. One trackbar to set α and another for β. The output might look like:

202 Chapter 4. highgui module. High Level GUI and Media

The OpenCV Tutorials, Release 2.3

4.1. Adding a Trackbar to our applications! 203

The OpenCV Tutorials, Release 2.3

204 Chapter 4. highgui module. High Level GUI and Media

CHAPTER

FIVE

CALIB3D MODULE. CAMERA
CALIBRATION AND 3D

RECONSTRUCTION

Although we got most of our images in a 2D format they do come from a 3D world. Here you will learn how to find
out from the 2D images information about the 3D world.

Note: Unfortunetly we have no tutorials into this section. Nevertheless, our tutorial writting team is working on it. If
you have a tutorial suggestion or you have writen yourself a tutorial (or coded a sample code) that you would like to
see here please contact us via our user group.

205

http://tech.groups.yahoo.com/group/OpenCV/

The OpenCV Tutorials, Release 2.3

206 Chapter 5. calib3d module. Camera calibration and 3D reconstruction

CHAPTER

SIX

FEATURE2D MODULE. 2D FEATURES
FRAMEWORK

Learn about how to use the feature points detectors, descriptors and matching framework found inside OpenCV.

•

Title: Harris corner detector
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Why is it a good idea to track corners? We learn to use the Harris method
to detect corners

•

Title: Shi-Tomasi corner detector
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we use an improved method to detect corners more accuratelyI

•

Title: Creating yor own corner detector
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Here you will learn how to use OpenCV functions to make your personal-
ized corner detector!

Title: Detecting corners location in subpixeles
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Is pixel resolution enough? Here we learn a simple method to improve our
accuracy.

207

The OpenCV Tutorials, Release 2.3

6.1 Harris corner detector

Goal

In this tutorial you will learn how to:

• Use the function cornerHarris to detect corners using the Harris-Stephens method.

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

/// Global variables
Mat src, src_gray;
int thresh = 200;
int max_thresh = 255;

char* source_window = "Source image";
char* corners_window = "Corners detected";

/// Function header
void cornerHarris_demo(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Load source image and convert it to gray
src = imread(argv[1], 1);
cvtColor(src, src_gray, CV_BGR2GRAY);

/// Create a window and a trackbar
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
createTrackbar("Threshold: ", source_window, &thresh, max_thresh, cornerHarris_demo);
imshow(source_window, src);

cornerHarris_demo(0, 0);

waitKey(0);
return(0);

}

/** @function cornerHarris_demo */
void cornerHarris_demo(int, void*)
{

208 Chapter 6. feature2d module. 2D Features framework

http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?#cornerHarris
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/TrackingMotion/cornerHarris_Demo.cpp

The OpenCV Tutorials, Release 2.3

Mat dst, dst_norm, dst_norm_scaled;
dst = Mat::zeros(src.size(), CV_32FC1);

/// Detector parameters
int blockSize = 2;
int apertureSize = 3;
double k = 0.04;

/// Detecting corners
cornerHarris(src_gray, dst, blockSize, apertureSize, k, BORDER_DEFAULT);

/// Normalizing
normalize(dst, dst_norm, 0, 255, NORM_MINMAX, CV_32FC1, Mat());
convertScaleAbs(dst_norm, dst_norm_scaled);

/// Drawing a circle around corners
for(int j = 0; j < dst_norm.rows ; j++)

{ for(int i = 0; i < dst_norm.cols; i++)
{

if((int) dst_norm.at<float>(j,i) > thresh)
{
circle(dst_norm_scaled, Point(i, j), 5, Scalar(0), 2, 8, 0);
}

}
}

/// Showing the result
namedWindow(corners_window, CV_WINDOW_AUTOSIZE);
imshow(corners_window, dst_norm_scaled);

}

Explanation

Result

The original image:

6.1. Harris corner detector 209

The OpenCV Tutorials, Release 2.3

The detected corners are surrounded by a small black circle

6.2 Shi-Tomasi corner detector

Goal

In this tutorial you will learn how to:

• Use the function goodFeaturesToTrack to detect corners using the Shi-Tomasi method.

210 Chapter 6. feature2d module. 2D Features framework

http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?#cv-goodfeaturestotrack

The OpenCV Tutorials, Release 2.3

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

/// Global variables
Mat src, src_gray;

int maxCorners = 23;
int maxTrackbar = 100;

RNG rng(12345);
char* source_window = "Image";

/// Function header
void goodFeaturesToTrack_Demo(int, void*);

/**
* @function main

*/
int main(int argc, char** argv)
{

/// Load source image and convert it to gray
src = imread(argv[1], 1);
cvtColor(src, src_gray, CV_BGR2GRAY);

/// Create Window
namedWindow(source_window, CV_WINDOW_AUTOSIZE);

/// Create Trackbar to set the number of corners
createTrackbar("Max corners:", source_window, &maxCorners, maxTrackbar, goodFeaturesToTrack_Demo);

imshow(source_window, src);

goodFeaturesToTrack_Demo(0, 0);

waitKey(0);
return(0);

}

/**
* @function goodFeaturesToTrack_Demo.cpp

* @brief Apply Shi-Tomasi corner detector

*/
void goodFeaturesToTrack_Demo(int, void*)
{

if(maxCorners < 1) { maxCorners = 1; }

6.2. Shi-Tomasi corner detector 211

https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/TrackingMotion/goodFeaturesToTrack_Demo.cpp

The OpenCV Tutorials, Release 2.3

/// Parameters for Shi-Tomasi algorithm
vector<Point2f> corners;
double qualityLevel = 0.01;
double minDistance = 10;
int blockSize = 3;
bool useHarrisDetector = false;
double k = 0.04;

/// Copy the source image
Mat copy;
copy = src.clone();

/// Apply corner detection
goodFeaturesToTrack(src_gray,

corners,
maxCorners,
qualityLevel,
minDistance,
Mat(),
blockSize,
useHarrisDetector,
k);

/// Draw corners detected
cout<<"** Number of corners detected: "<<corners.size()<<endl;
int r = 4;
for(int i = 0; i < corners.size(); i++)

{ circle(copy, corners[i], r, Scalar(rng.uniform(0,255), rng.uniform(0,255),
rng.uniform(0,255)), -1, 8, 0); }

/// Show what you got
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, copy);

}

212 Chapter 6. feature2d module. 2D Features framework

The OpenCV Tutorials, Release 2.3

Explanation

Result

6.3 Creating yor own corner detector

Goal

In this tutorial you will learn how to:

• Use the OpenCV function cornerEigenValsAndVecs to find the eigenvalues and eigenvectors to determine if a
pixel is a corner.

• Use the OpenCV function cornerMinEigenVal to find the minimum eigenvalues for corner detection.

• To implement our own version of the Harris detector as well as the Shi-Tomasi detector, by using the two
functions above.

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

6.3. Creating yor own corner detector 213

http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?#cv-cornereigenvalsandvecs
http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?#cv-cornermineigenval
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/TrackingMotion/cornerDetector_Demo.cpp

The OpenCV Tutorials, Release 2.3

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

/// Global variables
Mat src, src_gray;
Mat myHarris_dst; Mat myHarris_copy; Mat Mc;
Mat myShiTomasi_dst; Mat myShiTomasi_copy;

int myShiTomasi_qualityLevel = 50;
int myHarris_qualityLevel = 50;
int max_qualityLevel = 100;

double myHarris_minVal; double myHarris_maxVal;
double myShiTomasi_minVal; double myShiTomasi_maxVal;

RNG rng(12345);

char* myHarris_window = "My Harris corner detector";
char* myShiTomasi_window = "My Shi Tomasi corner detector";

/// Function headers
void myShiTomasi_function(int, void*);
void myHarris_function(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Load source image and convert it to gray
src = imread(argv[1], 1);
cvtColor(src, src_gray, CV_BGR2GRAY);

/// Set some parameters
int blockSize = 3; int apertureSize = 3;

/// My Harris matrix -- Using cornerEigenValsAndVecs
myHarris_dst = Mat::zeros(src_gray.size(), CV_32FC(6));
Mc = Mat::zeros(src_gray.size(), CV_32FC1);

cornerEigenValsAndVecs(src_gray, myHarris_dst, blockSize, apertureSize, BORDER_DEFAULT);

/* calculate Mc */
for(int j = 0; j < src_gray.rows; j++)

{ for(int i = 0; i < src_gray.cols; i++)
{

float lambda_1 = myHarris_dst.at<float>(j, i, 0);
float lambda_2 = myHarris_dst.at<float>(j, i, 1);
Mc.at<float>(j,i) = lambda_1*lambda_2 - 0.04*pow((lambda_1 + lambda_2), 2);

}
}

minMaxLoc(Mc, &myHarris_minVal, &myHarris_maxVal, 0, 0, Mat());

214 Chapter 6. feature2d module. 2D Features framework

The OpenCV Tutorials, Release 2.3

/* Create Window and Trackbar */
namedWindow(myHarris_window, CV_WINDOW_AUTOSIZE);
createTrackbar(" Quality Level:", myHarris_window, &myHarris_qualityLevel, max_qualityLevel,

myHarris_function);
myHarris_function(0, 0);

/// My Shi-Tomasi -- Using cornerMinEigenVal
myShiTomasi_dst = Mat::zeros(src_gray.size(), CV_32FC1);
cornerMinEigenVal(src_gray, myShiTomasi_dst, blockSize, apertureSize, BORDER_DEFAULT);

minMaxLoc(myShiTomasi_dst, &myShiTomasi_minVal, &myShiTomasi_maxVal, 0, 0, Mat());

/* Create Window and Trackbar */
namedWindow(myShiTomasi_window, CV_WINDOW_AUTOSIZE);
createTrackbar(" Quality Level:", myShiTomasi_window, &myShiTomasi_qualityLevel, max_qualityLevel,

myShiTomasi_function);
myShiTomasi_function(0, 0);

waitKey(0);
return(0);

}

/** @function myShiTomasi_function */
void myShiTomasi_function(int, void*)
{

myShiTomasi_copy = src.clone();

if(myShiTomasi_qualityLevel < 1) { myShiTomasi_qualityLevel = 1; }

for(int j = 0; j < src_gray.rows; j++)
{ for(int i = 0; i < src_gray.cols; i++)

{
if(myShiTomasi_dst.at<float>(j,i) > myShiTomasi_minVal + (myShiTomasi_maxVal -

myShiTomasi_minVal)*myShiTomasi_qualityLevel/max_qualityLevel)
{ circle(myShiTomasi_copy, Point(i,j), 4, Scalar(rng.uniform(0,255),

rng.uniform(0,255), rng.uniform(0,255)), -1, 8, 0); }
}

}
imshow(myShiTomasi_window, myShiTomasi_copy);

}

/** @function myHarris_function */
void myHarris_function(int, void*)
{

myHarris_copy = src.clone();

if(myHarris_qualityLevel < 1) { myHarris_qualityLevel = 1; }

for(int j = 0; j < src_gray.rows; j++)
{ for(int i = 0; i < src_gray.cols; i++)

{
if(Mc.at<float>(j,i) > myHarris_minVal + (myHarris_maxVal - myHarris_minVal)

*myHarris_qualityLevel/max_qualityLevel)
{ circle(myHarris_copy, Point(i,j), 4, Scalar(rng.uniform(0,255), rng.uniform(0,255),

rng.uniform(0,255)), -1, 8, 0); }
}

}
imshow(myHarris_window, myHarris_copy);

6.3. Creating yor own corner detector 215

The OpenCV Tutorials, Release 2.3

}

Explanation

Result

216 Chapter 6. feature2d module. 2D Features framework

The OpenCV Tutorials, Release 2.3

6.4 Detecting corners location in subpixeles

Goal

In this tutorial you will learn how to:

• Use the OpenCV function cornerSubPix to find more exact corner positions (more exact than integer pixels).

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

/// Global variables
Mat src, src_gray;

int maxCorners = 10;
int maxTrackbar = 25;

RNG rng(12345);
char* source_window = "Image";

/// Function header
void goodFeaturesToTrack_Demo(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Load source image and convert it to gray
src = imread(argv[1], 1);
cvtColor(src, src_gray, CV_BGR2GRAY);

/// Create Window
namedWindow(source_window, CV_WINDOW_AUTOSIZE);

/// Create Trackbar to set the number of corners
createTrackbar("Max corners:", source_window, &maxCorners, maxTrackbar, goodFeaturesToTrack_Demo);

imshow(source_window, src);

goodFeaturesToTrack_Demo(0, 0);

waitKey(0);
return(0);

}

6.4. Detecting corners location in subpixeles 217

http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html?#cv-cornersubpix
https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/TrackingMotion/cornerSubPix_Demo.cpp

The OpenCV Tutorials, Release 2.3

/**
* @function goodFeaturesToTrack_Demo.cpp

* @brief Apply Shi-Tomasi corner detector

*/
void goodFeaturesToTrack_Demo(int, void*)
{

if(maxCorners < 1) { maxCorners = 1; }

/// Parameters for Shi-Tomasi algorithm
vector<Point2f> corners;
double qualityLevel = 0.01;
double minDistance = 10;
int blockSize = 3;
bool useHarrisDetector = false;
double k = 0.04;

/// Copy the source image
Mat copy;
copy = src.clone();

/// Apply corner detection
goodFeaturesToTrack(src_gray,

corners,
maxCorners,
qualityLevel,
minDistance,
Mat(),
blockSize,
useHarrisDetector,
k);

/// Draw corners detected
cout<<"** Number of corners detected: "<<corners.size()<<endl;
int r = 4;
for(int i = 0; i < corners.size(); i++)

{ circle(copy, corners[i], r, Scalar(rng.uniform(0,255), rng.uniform(0,255),
rng.uniform(0,255)), -1, 8, 0); }

/// Show what you got
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, copy);

/// Set the neeed parameters to find the refined corners
Size winSize = Size(5, 5);
Size zeroZone = Size(-1, -1);
TermCriteria criteria = TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 40, 0.001);

/// Calculate the refined corner locations
cornerSubPix(src_gray, corners, winSize, zeroZone, criteria);

/// Write them down
for(int i = 0; i < corners.size(); i++)

{ cout<<" -- Refined Corner ["<<i<<"] ("<<corners[i].x<<","<<corners[i].y<<")"<<endl; }
}

218 Chapter 6. feature2d module. 2D Features framework

The OpenCV Tutorials, Release 2.3

Explanation

Result

Here is the result:

6.4. Detecting corners location in subpixeles 219

The OpenCV Tutorials, Release 2.3

220 Chapter 6. feature2d module. 2D Features framework

CHAPTER

SEVEN

VIDEO MODULE. VIDEO ANALYSIS

Look here in order to find use on your video stream algoritms like: motion extraction, feature tracking and foreground
extractions.

Note: Unfortunetly we have no tutorials into this section. Nevertheless, our tutorial writting team is working on it. If
you have a tutorial suggestion or you have writen yourself a tutorial (or coded a sample code) that you would like to
see here please contact us via our user group.

221

http://tech.groups.yahoo.com/group/OpenCV/

The OpenCV Tutorials, Release 2.3

222 Chapter 7. video module. Video analysis

CHAPTER

EIGHT

OBJDETECT MODULE. OBJECT
DETECTION

Ever wondered how your digital camera detects peoples and faces? Look here to find out!

Note: Unfortunetly we have no tutorials into this section. Nevertheless, our tutorial writting team is working on it. If
you have a tutorial suggestion or you have writen yourself a tutorial (or coded a sample code) that you would like to
see here please contact us via our user group.

223

http://tech.groups.yahoo.com/group/OpenCV/

The OpenCV Tutorials, Release 2.3

224 Chapter 8. objdetect module. Object Detection

CHAPTER

NINE

ML MODULE. MACHINE LEARNING

Use the powerfull machine learning classes for statistical classification, regression and clustering of data.

Note: Unfortunetly we have no tutorials into this section. Nevertheless, our tutorial writting team is working on it. If
you have a tutorial suggestion or you have writen yourself a tutorial (or coded a sample code) that you would like to
see here please contact us via our user group.

225

http://tech.groups.yahoo.com/group/OpenCV/

The OpenCV Tutorials, Release 2.3

226 Chapter 9. ml module. Machine Learning

CHAPTER

TEN

GPU MODULE. GPU-ACCELERATED
COMPUTER VISION

Squeeze out every little computation power from your system by using the power of your video card to run the OpenCV
algorithms.

Note: Unfortunetly we have no tutorials into this section. Nevertheless, our tutorial writting team is working on it. If
you have a tutorial suggestion or you have writen yourself a tutorial (or coded a sample code) that you would like to
see here please contact us via our user group.

227

http://tech.groups.yahoo.com/group/OpenCV/

The OpenCV Tutorials, Release 2.3

228 Chapter 10. gpu module. GPU-Accelerated Computer Vision

CHAPTER

ELEVEN

GENERAL TUTORIALS

These tutorials are the bottom of the iceberg as they link together multiple of the modules presented above in order to
solve complex problems.

Note: Unfortunetly we have no tutorials into this section. Nevertheless, our tutorial writting team is working on it. If
you have a tutorial suggestion or you have writen yourself a tutorial (or coded a sample code) that you would like to
see here please contact us via our user group.

229

http://tech.groups.yahoo.com/group/OpenCV/

	Introduction to OpenCV
	Installation in Linux
	Using OpenCV with gcc and CMake
	Using OpenCV with Eclipse (plugin CDT)
	Installation in Windows
	How to build applications with OpenCV inside the Microsoft Visual Studio
	Using Android binary package with Eclipse
	Load and Display an Image
	Load, Modify, and Save an Image

	core module. The Core Functionality
	Mat - The Basic Image Container
	How to scan images, lookup tables and time measurement with OpenCV
	Adding (blending) two images using OpenCV
	Changing the contrast and brightness of an image!
	Basic Drawing
	Fancy Drawing!
	Mask operations on matrixes

	imgproc module. Image Processing
	Smoothing Images
	Eroding and Dilating
	More Morphology Transformations
	Image Pyramids
	Basic Thresholding Operations
	Making your own linear filters!
	Adding borders to your images
	Sobel Derivatives
	Laplace Operator
	Canny Edge Detector
	Hough Line Transform
	Hough Circle Transform
	Remapping
	Affine Transformations
	Histogram Equalization
	Histogram Calculation
	Histogram Comparison
	Back Projection
	Template Matching
	Finding contours in your image
	Convex Hull
	Creating Bounding boxes and circles for contours
	Creating Bounding rotated boxes and ellipses for contours
	Image Moments
	Point Polygon Test

	highgui module. High Level GUI and Media
	Adding a Trackbar to our applications!

	calib3d module. Camera calibration and 3D reconstruction
	feature2d module. 2D Features framework
	Harris corner detector
	Shi-Tomasi corner detector
	Creating yor own corner detector
	Detecting corners location in subpixeles

	video module. Video analysis
	objdetect module. Object Detection
	ml module. Machine Learning
	gpu module. GPU-Accelerated Computer Vision
	General tutorials

