// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2019 Intel Corporation #include "../test_precomp.hpp" #ifdef HAVE_INF_ENGINE #include //////////////////////////////////////////////////////////////////////////////// // FIXME: Suppress deprecation warnings for OpenVINO 2019R2+ // BEGIN {{{ #if defined(__GNUC__) #pragma GCC diagnostic ignored "-Wdeprecated-declarations" #endif #ifdef _MSC_VER #pragma warning(disable: 4996) // was declared deprecated #endif #if defined(__GNUC__) #pragma GCC visibility push(default) #endif #include #if defined(__GNUC__) #pragma GCC visibility pop #endif // END }}} //////////////////////////////////////////////////////////////////////////////// #include #include #include "backends/ie/util.hpp" namespace opencv_test { namespace { // FIXME: taken from DNN module static void initDLDTDataPath() { #ifndef WINRT static bool initialized = false; if (!initialized) { const char* omzDataPath = getenv("OPENCV_OPEN_MODEL_ZOO_DATA_PATH"); if (omzDataPath) cvtest::addDataSearchPath(omzDataPath); const char* dnnDataPath = getenv("OPENCV_DNN_TEST_DATA_PATH"); if (dnnDataPath) { // Add the dnnDataPath itself - G-API is using some images there directly cvtest::addDataSearchPath(dnnDataPath); cvtest::addDataSearchPath(dnnDataPath + std::string("/omz_intel_models")); } initialized = true; } #endif // WINRT } // FIXME: taken from the DNN module void normAssert(cv::InputArray ref, cv::InputArray test, const char *comment /*= ""*/, double l1 = 0.00001, double lInf = 0.0001) { double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total(); EXPECT_LE(normL1, l1) << comment; double normInf = cvtest::norm(ref, test, cv::NORM_INF); EXPECT_LE(normInf, lInf) << comment; } std::vector modelPathByName(const std::string &model_name) { // Handle OMZ model layout changes among OpenVINO versions here static const std::unordered_multimap map = { {"age-gender-recognition-retail-0013", "2020.3.0/intel/age-gender-recognition-retail-0013/FP32"}, {"age-gender-recognition-retail-0013", "Retail/object_attributes/age_gender/dldt"}, }; const auto range = map.equal_range(model_name); std::vector result; for (auto it = range.first; it != range.second; ++it) { result.emplace_back(it->second); } return result; } std::tuple findModel(const std::string &model_name) { const auto candidates = modelPathByName(model_name); CV_Assert(!candidates.empty() && "No model path candidates found at all"); for (auto &&path : candidates) { std::string model_xml, model_bin; try { model_xml = findDataFile(path + "/" + model_name + ".xml", false); model_bin = findDataFile(path + "/" + model_name + ".bin", false); // Return the first file which actually works return std::make_tuple(model_xml, model_bin); } catch (SkipTestException&) { // This is quite ugly but it is a way for OpenCV to let us know // this file wasn't found. continue; } } // Default behavior if reached here. throw SkipTestException("Files for " + model_name + " were not found"); } } // anonymous namespace // TODO: Probably DNN/IE part can be further parametrized with a template // NOTE: here ".." is used to leave the default "gapi/" search scope TEST(TestAgeGenderIE, InferBasicTensor) { initDLDTDataPath(); std::string topology_path, weights_path; std::tie(topology_path, weights_path) = findModel("age-gender-recognition-retail-0013"); // Load IE network, initialize input data using that. namespace IE = InferenceEngine; cv::Mat in_mat; cv::Mat gapi_age, gapi_gender; IE::Blob::Ptr ie_age, ie_gender; { IE::CNNNetReader reader; reader.ReadNetwork(topology_path); reader.ReadWeights(weights_path); auto net = reader.getNetwork(); const auto &iedims = net.getInputsInfo().begin()->second->getTensorDesc().getDims(); auto cvdims = cv::gapi::ie::util::to_ocv(iedims); in_mat.create(cvdims, CV_32F); cv::randu(in_mat, -1, 1); auto plugin = IE::PluginDispatcher().getPluginByDevice("CPU"); auto plugin_net = plugin.LoadNetwork(net, {}); auto infer_request = plugin_net.CreateInferRequest(); infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); infer_request.Infer(); ie_age = infer_request.GetBlob("age_conv3"); ie_gender = infer_request.GetBlob("prob"); } // Configure & run G-API using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GMat in; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { topology_path, weights_path, "CPU" }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Validate with IE itself (avoid DNN module dependency here) normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); } TEST(TestAgeGenderIE, InferBasicImage) { initDLDTDataPath(); std::string topology_path, weights_path; std::tie(topology_path, weights_path) = findModel("age-gender-recognition-retail-0013"); // FIXME: Ideally it should be an image from disk // cv::Mat in_mat = cv::imread(findDataFile("grace_hopper_227.png")); cv::Mat in_mat(cv::Size(320, 240), CV_8UC3); cv::randu(in_mat, 0, 255); cv::Mat gapi_age, gapi_gender; // Load & run IE network namespace IE = InferenceEngine; IE::Blob::Ptr ie_age, ie_gender; { IE::CNNNetReader reader; reader.ReadNetwork(topology_path); reader.ReadWeights(weights_path); auto net = reader.getNetwork(); auto &ii = net.getInputsInfo().at("data"); ii->setPrecision(IE::Precision::U8); ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR); auto plugin = IE::PluginDispatcher().getPluginByDevice("CPU"); auto plugin_net = plugin.LoadNetwork(net, {}); auto infer_request = plugin_net.CreateInferRequest(); infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); infer_request.Infer(); ie_age = infer_request.GetBlob("age_conv3"); ie_gender = infer_request.GetBlob("prob"); } // Configure & run G-API using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GMat in; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { topology_path, weights_path, "CPU" }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Validate with IE itself (avoid DNN module dependency here) normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); } struct ROIList: public ::testing::Test { std::string m_model_path; std::string m_weights_path; cv::Mat m_in_mat; std::vector m_roi_list; std::vector m_out_ie_ages; std::vector m_out_ie_genders; std::vector m_out_gapi_ages; std::vector m_out_gapi_genders; using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); ROIList() { initDLDTDataPath(); std::tie(m_model_path, m_weights_path) = findModel("age-gender-recognition-retail-0013"); // FIXME: it must be cv::imread(findDataFile("../dnn/grace_hopper_227.png", false)); m_in_mat = cv::Mat(cv::Size(320, 240), CV_8UC3); cv::randu(m_in_mat, 0, 255); // both ROIs point to the same face, with a slightly changed geometry m_roi_list = { cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}), cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}), }; // Load & run IE network namespace IE = InferenceEngine; { IE::CNNNetReader reader; reader.ReadNetwork(m_model_path); reader.ReadWeights(m_weights_path); auto net = reader.getNetwork(); auto &ii = net.getInputsInfo().at("data"); ii->setPrecision(IE::Precision::U8); ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR); auto plugin = IE::PluginDispatcher().getPluginByDevice("CPU"); auto plugin_net = plugin.LoadNetwork(net, {}); auto infer_request = plugin_net.CreateInferRequest(); auto frame_blob = cv::gapi::ie::util::to_ie(m_in_mat); for (auto &&rc : m_roi_list) { const auto ie_rc = IE::ROI { 0u , static_cast(rc.x) , static_cast(rc.y) , static_cast(rc.width) , static_cast(rc.height) }; infer_request.SetBlob("data", IE::make_shared_blob(frame_blob, ie_rc)); infer_request.Infer(); using namespace cv::gapi::ie::util; m_out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); m_out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); } } // namespace IE = .. } // ROIList() void validate() { // Validate with IE itself (avoid DNN module dependency here) ASSERT_EQ(2u, m_out_ie_ages.size()); ASSERT_EQ(2u, m_out_ie_genders.size()); ASSERT_EQ(2u, m_out_gapi_ages.size()); ASSERT_EQ(2u, m_out_gapi_genders.size()); normAssert(m_out_ie_ages [0], m_out_gapi_ages [0], "0: Test age output"); normAssert(m_out_ie_genders[0], m_out_gapi_genders[0], "0: Test gender output"); normAssert(m_out_ie_ages [1], m_out_gapi_ages [1], "1: Test age output"); normAssert(m_out_ie_genders[1], m_out_gapi_genders[1], "1: Test gender output"); } }; // ROIList TEST_F(ROIList, TestInfer) { cv::GArray rr; cv::GMat in; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer(rr, in); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { m_model_path, m_weights_path, "CPU" }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(m_in_mat, m_roi_list), cv::gout(m_out_gapi_ages, m_out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); validate(); } TEST_F(ROIList, TestInfer2) { cv::GArray rr; cv::GMat in; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer2(in, rr); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { m_model_path, m_weights_path, "CPU" }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(m_in_mat, m_roi_list), cv::gout(m_out_gapi_ages, m_out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); validate(); } } // namespace opencv_test #endif // HAVE_INF_ENGINE