/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // // 2011 Jason Newton // 2016, 2021 Costantino Grana // 2016, 2021 Federico Bolelli // 2016 Lorenzo Baraldi // 2016 Roberto Vezzani // 2016 Michele Cancilla // 2021 Stefano Allegretti //M*/ // #include "precomp.hpp" #include namespace cv{ namespace connectedcomponents{ struct NoOp{ NoOp(){ } inline void init(int /*labels*/){ } inline void initElement(const int /*nlabels*/){ } inline void operator()(int r, int c, int l){ CV_UNUSED(r); CV_UNUSED(c); CV_UNUSED(l); } void finish(){ } inline void setNextLoc(const int /*nextLoc*/){ } inline static void mergeStats(const cv::Mat& /*imgLabels*/, NoOp * /*sopArray*/, NoOp& /*sop*/, const int& /*nLabels*/){ } }; struct Point2ui64{ uint64 x, y; Point2ui64(uint64 _x, uint64 _y) :x(_x), y(_y){} }; struct CCStatsOp{ const _OutputArray *_mstatsv; cv::Mat statsv; const _OutputArray *_mcentroidsv; cv::Mat centroidsv; std::vector integrals; int _nextLoc; CCStatsOp() : _mstatsv(0), _mcentroidsv(0), _nextLoc(0) {} CCStatsOp(OutputArray _statsv, OutputArray _centroidsv) : _mstatsv(&_statsv), _mcentroidsv(&_centroidsv), _nextLoc(0){} inline void init(int nlabels){ _mstatsv->create(cv::Size(CC_STAT_MAX, nlabels), cv::DataType::type); statsv = _mstatsv->getMat(); _mcentroidsv->create(cv::Size(2, nlabels), cv::DataType::type); centroidsv = _mcentroidsv->getMat(); for (int l = 0; l < (int)nlabels; ++l){ int *row = (int *)&statsv.at(l, 0); row[CC_STAT_LEFT] = INT_MAX; row[CC_STAT_TOP] = INT_MAX; row[CC_STAT_WIDTH] = INT_MIN; row[CC_STAT_HEIGHT] = INT_MIN; row[CC_STAT_AREA] = 0; } integrals.resize(nlabels, Point2ui64(0, 0)); } inline void initElement(const int nlabels){ statsv = cv::Mat(nlabels, CC_STAT_MAX, cv::DataType::type); for (int l = 0; l < (int)nlabels; ++l){ int *row = (int *)statsv.ptr(l); row[CC_STAT_LEFT] = INT_MAX; row[CC_STAT_TOP] = INT_MAX; row[CC_STAT_WIDTH] = INT_MIN; row[CC_STAT_HEIGHT] = INT_MIN; row[CC_STAT_AREA] = 0; } integrals.resize(nlabels, Point2ui64(0, 0)); } void operator()(int r, int c, int l){ int *row =& statsv.at(l, 0); row[CC_STAT_LEFT] = MIN(row[CC_STAT_LEFT], c); row[CC_STAT_WIDTH] = MAX(row[CC_STAT_WIDTH], c); row[CC_STAT_TOP] = MIN(row[CC_STAT_TOP], r); row[CC_STAT_HEIGHT] = MAX(row[CC_STAT_HEIGHT], r); row[CC_STAT_AREA]++; Point2ui64& integral = integrals[l]; integral.x += c; integral.y += r; } void finish(){ for (int l = 0; l < statsv.rows; ++l){ int *row =& statsv.at(l, 0); double area = ((unsigned*)row)[CC_STAT_AREA]; double *centroid = ¢roidsv.at(l, 0); if (area > 0){ row[CC_STAT_WIDTH] = row[CC_STAT_WIDTH] - row[CC_STAT_LEFT] + 1; row[CC_STAT_HEIGHT] = row[CC_STAT_HEIGHT] - row[CC_STAT_TOP] + 1; Point2ui64& integral = integrals[l]; centroid[0] = double(integral.x) / area; centroid[1] = double(integral.y) / area; } else { row[CC_STAT_WIDTH] = 0; row[CC_STAT_HEIGHT] = 0; row[CC_STAT_LEFT] = -1; centroid[0] = std::numeric_limits::quiet_NaN(); centroid[1] = std::numeric_limits::quiet_NaN(); } } } inline void setNextLoc(const int nextLoc){ _nextLoc = nextLoc; } inline static void mergeStats(const cv::Mat& imgLabels, CCStatsOp *sopArray, CCStatsOp& sop, const int& nLabels){ const int h = imgLabels.rows; if (sop._nextLoc != h){ for (int nextLoc = sop._nextLoc; nextLoc < h; nextLoc = sopArray[nextLoc]._nextLoc){ //merge between sopNext and sop for (int l = 0; l < nLabels; ++l){ int *rowNext = (int*)sopArray[nextLoc].statsv.ptr(l); if (rowNext[CC_STAT_AREA] > 0){ //if changed merge all the stats int *rowMerged = (int*)sop.statsv.ptr(l); rowMerged[CC_STAT_LEFT] = MIN(rowMerged[CC_STAT_LEFT], rowNext[CC_STAT_LEFT]); rowMerged[CC_STAT_WIDTH] = MAX(rowMerged[CC_STAT_WIDTH], rowNext[CC_STAT_WIDTH]); rowMerged[CC_STAT_TOP] = MIN(rowMerged[CC_STAT_TOP], rowNext[CC_STAT_TOP]); rowMerged[CC_STAT_HEIGHT] = MAX(rowMerged[CC_STAT_HEIGHT], rowNext[CC_STAT_HEIGHT]); rowMerged[CC_STAT_AREA] += rowNext[CC_STAT_AREA]; sop.integrals[l].x += sopArray[nextLoc].integrals[l].x; sop.integrals[l].y += sopArray[nextLoc].integrals[l].y; } } } } } }; //Find the root of the tree of node i template inline static LabelT findRoot(const LabelT *P, LabelT i){ LabelT root = i; while (P[root] < root){ root = P[root]; } return root; } //Make all nodes in the path of node i point to root template inline static void setRoot(LabelT *P, LabelT i, LabelT root){ while (P[i] < i){ LabelT j = P[i]; P[i] = root; i = j; } P[i] = root; } //Find the root of the tree of the node i and compress the path in the process template inline static LabelT find(LabelT *P, LabelT i){ LabelT root = findRoot(P, i); setRoot(P, i, root); return root; } //unite the two trees containing nodes i and j and return the new root template inline static LabelT set_union(LabelT *P, LabelT i, LabelT j){ LabelT root = findRoot(P, i); if (i != j){ LabelT rootj = findRoot(P, j); if (root > rootj){ root = rootj; } setRoot(P, j, root); } setRoot(P, i, root); return root; } //Flatten the Union Find tree and relabel the components template inline static LabelT flattenL(LabelT *P, LabelT length){ LabelT k = 1; for (LabelT i = 1; i < length; ++i){ if (P[i] < i){ P[i] = P[P[i]]; } else{ P[i] = k; k = k + 1; } } return k; } template inline static void flattenL(LabelT *P, const int start, const int nElem, LabelT& k){ for (int i = start; i < start + nElem; ++i){ if (P[i] < i){//node that point to root P[i] = P[P[i]]; } else{ //for root node P[i] = k; k = k + 1; } } } template static inline LT stripeFirstLabel4Connectivity(int y, int w) { CV_DbgAssert((y & 1) == 0); return (LT(y) * LT(w) /*+ 1*/) / 2 + 1; } template static inline LT stripeFirstLabel8Connectivity(int y, int w) { CV_DbgAssert((y & 1) == 0); return LT((y /*+ 1*/) / 2) * LT((w + 1) / 2) + 1; } //Implementation of Spaghetti algorithm, as described in "Spaghetti Labeling: Directed Acyclic Graphs for Block-Based //Connected Components Labeling" (only for 8-connectivity) //Federico Bolelli et. al. template struct LabelingBolelli { LabelT operator()(const cv::Mat& img, cv::Mat& imgLabels, int connectivity, StatsOp& sop) { CV_Assert(img.rows == imgLabels.rows); CV_Assert(img.cols == imgLabels.cols); CV_Assert(connectivity == 8); const int h = img.rows; const int w = img.cols; const int e_rows = h & -2; const bool o_rows = h % 2 == 1; const int e_cols = w & -2; const bool o_cols = w % 2 == 1; // A quick and dirty upper bound for the maximum number of labels. // Following formula comes from the fact that a 2x2 block in 8-connectivity case // can never have more than 1 new label and 1 label for background. // Worst case image example pattern: // 1 0 1 0 1... // 0 0 0 0 0... // 1 0 1 0 1... // ............ const size_t Plength = size_t(((h + 1) / 2) * size_t((w + 1) / 2)) + 1; std::vector P_(Plength, 0); LabelT *P = P_.data(); //P[0] = 0; LabelT lunique = 1; // First scan // We work with 2x2 blocks // +-+-+-+ // |P|Q|R| // +-+-+-+ // |S|X| // +-+-+ // The pixels are named as follows // +---+---+---+ // |a b|c d|e f| // |g h|i j|k l| // +---+---+---+ // |m n|o p| // |q r|s t| // +---+---+ // Pixels a, f, l, q are not needed, since we need to understand the // the connectivity between these blocks and those pixels only matter // when considering the outer connectivities // A bunch of defines is used to check if the pixels are foreground // and to define actions to be performed on blocks { #define CONDITION_B img_row_prev_prev[c-1]>0 #define CONDITION_C img_row_prev_prev[c]>0 #define CONDITION_D img_row_prev_prev[c+1]>0 #define CONDITION_E img_row_prev_prev[c+2]>0 #define CONDITION_G img_row_prev[c-2]>0 #define CONDITION_H img_row_prev[c-1]>0 #define CONDITION_I img_row_prev[c]>0 #define CONDITION_J img_row_prev[c+1]>0 #define CONDITION_K img_row_prev[c+2]>0 #define CONDITION_M img_row[c-2]>0 #define CONDITION_N img_row[c-1]>0 #define CONDITION_O img_row[c]>0 #define CONDITION_P img_row[c+1]>0 #define CONDITION_R img_row_fol[c-1]>0 #define CONDITION_S img_row_fol[c]>0 #define CONDITION_T img_row_fol[c+1]>0 // Action 1: No action #define ACTION_1 img_labels_row[c] = 0; // Action 2: New label (the block has foreground pixels and is not connected to anything else) #define ACTION_2 img_labels_row[c] = lunique; \ P[lunique] = lunique; \ lunique = lunique + 1; //Action 3: Assign label of block P #define ACTION_3 img_labels_row[c] = img_labels_row_prev_prev[c - 2]; // Action 4: Assign label of block Q #define ACTION_4 img_labels_row[c] = img_labels_row_prev_prev[c]; // Action 5: Assign label of block R #define ACTION_5 img_labels_row[c] = img_labels_row_prev_prev[c + 2]; // Action 6: Assign label of block S #define ACTION_6 img_labels_row[c] = img_labels_row[c - 2]; // Action 7: Merge labels of block P and Q #define ACTION_7 img_labels_row[c] = set_union(P, img_labels_row_prev_prev[c - 2], img_labels_row_prev_prev[c]); //Action 8: Merge labels of block P and R #define ACTION_8 img_labels_row[c] = set_union(P, img_labels_row_prev_prev[c - 2], img_labels_row_prev_prev[c + 2]); // Action 9 Merge labels of block P and S #define ACTION_9 img_labels_row[c] = set_union(P, img_labels_row_prev_prev[c - 2], img_labels_row[c - 2]); // Action 10 Merge labels of block Q and R #define ACTION_10 img_labels_row[c] = set_union(P, img_labels_row_prev_prev[c], img_labels_row_prev_prev[c + 2]); // Action 11: Merge labels of block Q and S #define ACTION_11 img_labels_row[c] = set_union(P, img_labels_row_prev_prev[c], img_labels_row[c - 2]); // Action 12: Merge labels of block R and S #define ACTION_12 img_labels_row[c] = set_union(P, img_labels_row_prev_prev[c + 2], img_labels_row[c - 2]); // Action 13: Merge labels of block P, Q and R #define ACTION_13 img_labels_row[c] = set_union(P, set_union(P, img_labels_row_prev_prev[c - 2], img_labels_row_prev_prev[c]), img_labels_row_prev_prev[c + 2]); // Action 14: Merge labels of block P, Q and S #define ACTION_14 img_labels_row[c] = set_union(P, set_union(P, img_labels_row_prev_prev[c - 2], img_labels_row_prev_prev[c]), img_labels_row[c - 2]); //Action 15: Merge labels of block P, R and S #define ACTION_15 img_labels_row[c] = set_union(P, set_union(P, img_labels_row_prev_prev[c - 2], img_labels_row_prev_prev[c + 2]), img_labels_row[c - 2]); //Action 16: labels of block Q, R and S #define ACTION_16 img_labels_row[c] = set_union(P, set_union(P, img_labels_row_prev_prev[c], img_labels_row_prev_prev[c + 2]), img_labels_row[c - 2]); } // The following Directed Rooted Acyclic Graphs (DAGs) allow to choose which action to // perform, checking as few conditions as possible. Special DAGs are used for the first/last // line of the image and for single line images. Actions: the blocks label are provisionally // stored in the top left pixel of the block in the labels image. if (h == 1) { // Single line const PixelT * const img_row = img.ptr(0); LabelT * const img_labels_row = imgLabels.ptr(0); int c = -2; #include "ccl_bolelli_forest_singleline.inc.hpp" } else { // More than one line // First couple of lines { const PixelT * const img_row = img.ptr(0); const PixelT * const img_row_fol = (PixelT *)(((char*)img_row) + img.step.p[0]); LabelT * const img_labels_row = imgLabels.ptr(0); int c = -2; #include "ccl_bolelli_forest_firstline.inc.hpp" } // Every other line but the last one if image has an odd number of rows for (int r = 2; r < e_rows; r += 2) { // Get rows pointer const PixelT * const img_row = img.ptr(r); const PixelT * const img_row_prev = (PixelT *)(((char*)img_row) - img.step.p[0]); const PixelT * const img_row_prev_prev = (PixelT *)(((char*)img_row_prev) - img.step.p[0]); const PixelT * const img_row_fol = (PixelT *)(((char*)img_row) + img.step.p[0]); LabelT * const img_labels_row = imgLabels.ptr(r); LabelT * const img_labels_row_prev_prev = (LabelT *)(((char*)img_labels_row) - imgLabels.step.p[0] - imgLabels.step.p[0]); int c = -2; goto tree_0; #include "ccl_bolelli_forest.inc.hpp" } // Last line (in case the rows are odd) if (o_rows) { int r = h - 1; const PixelT * const img_row = img.ptr(r); const PixelT * const img_row_prev = (PixelT *)(((char*)img_row) - img.step.p[0]); const PixelT * const img_row_prev_prev = (PixelT *)(((char*)img_row_prev) - img.step.p[0]); LabelT * const img_labels_row = imgLabels.ptr(r); LabelT * const img_labels_row_prev_prev = (LabelT *)(((char*)img_labels_row) - imgLabels.step.p[0] - imgLabels.step.p[0]); int c = -2; #include "ccl_bolelli_forest_lastline.inc.hpp" } } // undef conditions and actions { #undef ACTION_1 #undef ACTION_2 #undef ACTION_3 #undef ACTION_4 #undef ACTION_5 #undef ACTION_6 #undef ACTION_7 #undef ACTION_8 #undef ACTION_9 #undef ACTION_10 #undef ACTION_11 #undef ACTION_12 #undef ACTION_13 #undef ACTION_14 #undef ACTION_15 #undef ACTION_16 #undef CONDITION_B #undef CONDITION_C #undef CONDITION_D #undef CONDITION_E #undef CONDITION_G #undef CONDITION_H #undef CONDITION_I #undef CONDITION_J #undef CONDITION_K #undef CONDITION_M #undef CONDITION_N #undef CONDITION_O #undef CONDITION_P #undef CONDITION_R #undef CONDITION_S #undef CONDITION_T } // Second scan + analysis LabelT nLabels = flattenL(P, lunique); sop.init(nLabels); int r = 0; for (; r < e_rows; r += 2) { // Get rows pointer const PixelT * const img_row = img.ptr(r); const PixelT * const img_row_fol = (PixelT *)(((char*)img_row) + img.step.p[0]); LabelT * const img_labels_row = imgLabels.ptr(r); LabelT * const img_labels_row_fol = (LabelT *)(((char*)img_labels_row) + imgLabels.step.p[0]); int c = 0; for (; c < e_cols; c += 2) { LabelT iLabel = img_labels_row[c]; if (iLabel > 0) { iLabel = P[iLabel]; if (img_row[c] > 0) { img_labels_row[c] = iLabel; sop(r, c, iLabel); } else { img_labels_row[c] = 0; sop(r, c, 0); } if (img_row[c + 1] > 0) { img_labels_row[c + 1] = iLabel; sop(r, c + 1, iLabel); } else { img_labels_row[c + 1] = 0; sop(r, c + 1, 0); } if (img_row_fol[c] > 0) { img_labels_row_fol[c] = iLabel; sop(r + 1, c, iLabel); } else { img_labels_row_fol[c] = 0; sop(r + 1, c, 0); } if (img_row_fol[c + 1] > 0) { img_labels_row_fol[c + 1] = iLabel; sop(r + 1, c + 1, iLabel); } else { img_labels_row_fol[c + 1] = 0; sop(r + 1, c + 1, 0); } } else { img_labels_row[c] = 0; sop(r, c, 0); img_labels_row[c + 1] = 0; sop(r, c + 1, 0); img_labels_row_fol[c] = 0; sop(r + 1, c, 0); img_labels_row_fol[c + 1] = 0; sop(r + 1, c + 1, 0); } } // Last column if the number of columns is odd if (o_cols) { LabelT iLabel = img_labels_row[c]; if (iLabel > 0) { iLabel = P[iLabel]; if (img_row[c] > 0) { img_labels_row[c] = iLabel; sop(r, c, iLabel); } else { img_labels_row[c] = 0; sop(r, c, 0); } if (img_row_fol[c] > 0) { img_labels_row_fol[c] = iLabel; sop(r + 1, c, iLabel); } else { img_labels_row_fol[c] = 0; sop(r + 1, c, 0); } } else { img_labels_row[c] = 0; sop(r, c, 0); img_labels_row_fol[c] = 0; sop(r + 1, c, 0); } } } // Last row if the number of rows is odd if (o_rows) { // Get rows pointer const PixelT * const img_row = img.ptr(r); LabelT * const img_labels_row = imgLabels.ptr(r); int c = 0; for (; c < e_cols; c += 2) { LabelT iLabel = img_labels_row[c]; if (iLabel > 0) { iLabel = P[iLabel]; if (img_row[c] > 0) { img_labels_row[c] = iLabel; sop(r, c, iLabel); } else { img_labels_row[c] = 0; sop(r, c, 0); } if (img_row[c + 1] > 0) { img_labels_row[c + 1] = iLabel; sop(r, c + 1, iLabel); } else { img_labels_row[c + 1] = 0; sop(r, c + 1, 0); } } else { img_labels_row[c] = 0; sop(r, c, 0); img_labels_row[c + 1] = 0; sop(r, c + 1, 0); } } // Last column if the number of columns is odd if (o_cols) { LabelT iLabel = img_labels_row[c]; if (iLabel > 0) { iLabel = P[iLabel]; if (img_row[c] > 0) { img_labels_row[c] = iLabel; sop(r, c, iLabel); } else { img_labels_row[c] = 0; sop(r, c, 0); } } else { img_labels_row[c] = 0; sop(r, c, iLabel); } } } sop.finish(); return nLabels; }//End function LabelingBolelli operator() };//End struct LabelingBolelli //Parallel implementation of Scan Array-based Union Find (SAUF) algorithm, as described in "Two More Strategies to Speed //Up Connected Components Labeling Algorithms" //Federico Bolelli et. al. template struct LabelingWuParallel{ class FirstScan8Connectivity : public cv::ParallelLoopBody{ const cv::Mat& img_; cv::Mat& imgLabels_; LabelT *P_; int *chunksSizeAndLabels_; public: FirstScan8Connectivity(const cv::Mat& img, cv::Mat& imgLabels, LabelT *P, int *chunksSizeAndLabels) : img_(img), imgLabels_(imgLabels), P_(P), chunksSizeAndLabels_(chunksSizeAndLabels){} FirstScan8Connectivity& operator=(const FirstScan8Connectivity& ) { return *this; } void operator()(const cv::Range& range2) const CV_OVERRIDE { const Range range(range2.start * 2, std::min(range2.end * 2, img_.rows)); int r = range.start; chunksSizeAndLabels_[r] = range.end; LabelT label = stripeFirstLabel8Connectivity(r, imgLabels_.cols); const LabelT firstLabel = label; const int w = img_.cols; const int limitLine = r, startR = r; // Rosenfeld Mask // +-+-+-+ // |p|q|r| // +-+-+-+ // |s|x| // +-+-+ for (; r != range.end; ++r) { PixelT const * const img_row = img_.ptr(r); PixelT const * const img_row_prev = (PixelT *)(((char *)img_row) - img_.step.p[0]); LabelT * const imgLabels_row = imgLabels_.ptr(r); LabelT * const imgLabels_row_prev = (LabelT *)(((char *)imgLabels_row) - imgLabels_.step.p[0]); for (int c = 0; c < w; ++c) { #define condition_p c > 0 && r > limitLine && img_row_prev[c - 1] > 0 #define condition_q r > limitLine && img_row_prev[c] > 0 #define condition_r c < w - 1 && r > limitLine && img_row_prev[c + 1] > 0 #define condition_s c > 0 && img_row[c - 1] > 0 #define condition_x img_row[c] > 0 if (condition_x){ if (condition_q){ //copy q imgLabels_row[c] = imgLabels_row_prev[c]; } else{ //not q if (condition_r){ if (condition_p){ //concavity p->x->r. Merge imgLabels_row[c] = set_union(P_, imgLabels_row_prev[c - 1], imgLabels_row_prev[c + 1]); } else{ //not p and q if (condition_s){ //step s->x->r. Merge imgLabels_row[c] = set_union(P_, imgLabels_row[c - 1], imgLabels_row_prev[c + 1]); } else{ //not p, q and s //copy r imgLabels_row[c] = imgLabels_row_prev[c + 1]; } } } else{ //not r and q if (condition_p){ //copy p imgLabels_row[c] = imgLabels_row_prev[c - 1]; } else{//not r,q and p if (condition_s){ imgLabels_row[c] = imgLabels_row[c - 1]; } else{ //new label imgLabels_row[c] = label; P_[label] = label; label = label + 1; } } } } } else{ //x is a background pixel imgLabels_row[c] = 0; } } } //write in the follower memory location chunksSizeAndLabels_[startR + 1] = label - firstLabel; } #undef condition_p #undef condition_q #undef condition_r #undef condition_s #undef condition_x }; class FirstScan4Connectivity : public cv::ParallelLoopBody{ const cv::Mat& img_; cv::Mat& imgLabels_; LabelT *P_; int *chunksSizeAndLabels_; public: FirstScan4Connectivity(const cv::Mat& img, cv::Mat& imgLabels, LabelT *P, int *chunksSizeAndLabels) : img_(img), imgLabels_(imgLabels), P_(P), chunksSizeAndLabels_(chunksSizeAndLabels){} FirstScan4Connectivity& operator=(const FirstScan4Connectivity& ) { return *this; } void operator()(const cv::Range& range2) const CV_OVERRIDE { const Range range(range2.start * 2, std::min(range2.end * 2, img_.rows)); int r = range.start; chunksSizeAndLabels_[r] = range.end; LabelT label = stripeFirstLabel4Connectivity(r, imgLabels_.cols); const LabelT firstLabel = label; const int w = img_.cols; const int limitLine = r, startR = r; // Rosenfeld Mask // +-+-+-+ // |-|q|-| // +-+-+-+ // |s|x| // +-+-+ for (; r != range.end; ++r){ PixelT const * const img_row = img_.ptr(r); PixelT const * const img_row_prev = (PixelT *)(((char *)img_row) - img_.step.p[0]); LabelT * const imgLabels_row = imgLabels_.ptr(r); LabelT * const imgLabels_row_prev = (LabelT *)(((char *)imgLabels_row) - imgLabels_.step.p[0]); for (int c = 0; c < w; ++c) { #define condition_q r > limitLine && img_row_prev[c] > 0 #define condition_s c > 0 && img_row[c - 1] > 0 #define condition_x img_row[c] > 0 if (condition_x){ if (condition_q){ if (condition_s){ //step s->x->q. Merge imgLabels_row[c] = set_union(P_, imgLabels_row[c - 1], imgLabels_row_prev[c]); } else{ //copy q imgLabels_row[c] = imgLabels_row_prev[c]; } } else{ if (condition_s){ // copy s imgLabels_row[c] = imgLabels_row[c - 1]; } else{ //new label imgLabels_row[c] = label; P_[label] = label; label = label + 1; } } } else{ //x is a background pixel imgLabels_row[c] = 0; } } } //write in the following memory location chunksSizeAndLabels_[startR + 1] = label - firstLabel; } #undef condition_q #undef condition_s #undef condition_x }; class SecondScan : public cv::ParallelLoopBody{ cv::Mat& imgLabels_; const LabelT *P_; StatsOp& sop_; StatsOp *sopArray_; LabelT& nLabels_; public: SecondScan(cv::Mat& imgLabels, const LabelT *P, StatsOp& sop, StatsOp *sopArray, LabelT& nLabels) : imgLabels_(imgLabels), P_(P), sop_(sop), sopArray_(sopArray), nLabels_(nLabels){} SecondScan& operator=(const SecondScan& ) { return *this; } void operator()(const cv::Range& range2) const CV_OVERRIDE { const Range range(range2.start * 2, std::min(range2.end * 2, imgLabels_.rows)); int r = range.start; const int rowBegin = r; const int rowEnd = range.end; if (rowBegin > 0){ sopArray_[rowBegin].initElement(nLabels_); sopArray_[rowBegin].setNextLoc(rowEnd); //_nextLoc = rowEnd; for (; r < rowEnd; ++r) { LabelT * img_row_start = imgLabels_.ptr(r); LabelT * const img_row_end = img_row_start + imgLabels_.cols; for (int c = 0; img_row_start != img_row_end; ++img_row_start, ++c){ *img_row_start = P_[*img_row_start]; sopArray_[rowBegin](r, c, *img_row_start); } } } else{ //the first thread uses sop in order to make less merges sop_.setNextLoc(rowEnd); for (; r < rowEnd; ++r) { LabelT * img_row_start = imgLabels_.ptr(r); LabelT * const img_row_end = img_row_start + imgLabels_.cols; for (int c = 0; img_row_start != img_row_end; ++img_row_start, ++c){ *img_row_start = P_[*img_row_start]; sop_(r, c, *img_row_start); } } } } }; inline static void mergeLabels8Connectivity(cv::Mat& imgLabels, LabelT *P, const int *chunksSizeAndLabels){ // Merge Mask // +-+-+-+ // |p|q|r| // +-+-+-+ // |x| // +-+ const int w = imgLabels.cols, h = imgLabels.rows; for (int r = chunksSizeAndLabels[0]; r < h; r = chunksSizeAndLabels[r]){ LabelT * const imgLabels_row = imgLabels.ptr(r); LabelT * const imgLabels_row_prev = (LabelT *)(((char *)imgLabels_row) - imgLabels.step.p[0]); for (int c = 0; c < w; ++c){ #define condition_p c > 0 && imgLabels_row_prev[c - 1] > 0 #define condition_q imgLabels_row_prev[c] > 0 #define condition_r c < w - 1 && imgLabels_row_prev[c + 1] > 0 #define condition_x imgLabels_row[c] > 0 if (condition_x){ if (condition_p){ //merge of two label imgLabels_row[c] = set_union(P, imgLabels_row_prev[c - 1], imgLabels_row[c]); } if (condition_r){ //merge of two label imgLabels_row[c] = set_union(P, imgLabels_row_prev[c + 1], imgLabels_row[c]); } if (condition_q){ //merge of two label imgLabels_row[c] = set_union(P, imgLabels_row_prev[c], imgLabels_row[c]); } } } } #undef condition_p #undef condition_q #undef condition_r #undef condition_x } inline static void mergeLabels4Connectivity(cv::Mat& imgLabels, LabelT *P, const int *chunksSizeAndLabels){ // Merge Mask // +-+-+-+ // |-|q|-| // +-+-+-+ // |x| // +-+ const int w = imgLabels.cols, h = imgLabels.rows; for (int r = chunksSizeAndLabels[0]; r < h; r = chunksSizeAndLabels[r]){ LabelT * const imgLabels_row = imgLabels.ptr(r); LabelT * const imgLabels_row_prev = (LabelT *)(((char *)imgLabels_row) - imgLabels.step.p[0]); for (int c = 0; c < w; ++c){ #define condition_q imgLabels_row_prev[c] > 0 #define condition_x imgLabels_row[c] > 0 if (condition_x){ if (condition_q){ //merge of two label imgLabels_row[c] = set_union(P, imgLabels_row_prev[c], imgLabels_row[c]); } } } } #undef condition_q #undef condition_x } LabelT operator()(const cv::Mat& img, cv::Mat& imgLabels, int connectivity, StatsOp& sop){ CV_Assert(img.rows == imgLabels.rows); CV_Assert(img.cols == imgLabels.cols); CV_Assert(connectivity == 8 || connectivity == 4); const int h = img.rows; const int w = img.cols; //A quick and dirty upper bound for the maximum number of labels. //Following formula comes from the fact that a 2x2 block in 4-way connectivity //labeling can never have more than 2 new labels and 1 label for background. //Worst case image example pattern: //1 0 1 0 1... //0 1 0 1 0... //1 0 1 0 1... //............ //Obviously, 4-way connectivity upper bound is also good for 8-way connectivity labeling const size_t Plength = (size_t(h) * size_t(w) + 1) / 2 + 1; //Array used to store info and labeled pixel by each thread. //Different threads affect different memory location of chunksSizeAndLabels std::vector chunksSizeAndLabels(roundUp(h, 2)); //Tree of labels std::vector P_(Plength, 0); LabelT *P = P_.data(); //First label is for background //P[0] = 0; cv::Range range2(0, divUp(h, 2)); const double nParallelStripes = std::max(1, std::min(h / 2, getNumThreads()*4)); LabelT nLabels = 1; if (connectivity == 8){ //First scan cv::parallel_for_(range2, FirstScan8Connectivity(img, imgLabels, P, chunksSizeAndLabels.data()), nParallelStripes); //merge labels of different chunks mergeLabels8Connectivity(imgLabels, P, chunksSizeAndLabels.data()); for (int i = 0; i < h; i = chunksSizeAndLabels[i]){ flattenL(P, stripeFirstLabel8Connectivity(i, w), chunksSizeAndLabels[i + 1], nLabels); } } else{ //First scan cv::parallel_for_(range2, FirstScan4Connectivity(img, imgLabels, P, chunksSizeAndLabels.data()), nParallelStripes); //merge labels of different chunks mergeLabels4Connectivity(imgLabels, P, chunksSizeAndLabels.data()); for (int i = 0; i < h; i = chunksSizeAndLabels[i]){ flattenL(P, stripeFirstLabel4Connectivity(i, w), chunksSizeAndLabels[i + 1], nLabels); } } //Array for statistics dataof threads std::vector sopArray(h); sop.init(nLabels); //Second scan cv::parallel_for_(range2, SecondScan(imgLabels, P, sop, sopArray.data(), nLabels), nParallelStripes); StatsOp::mergeStats(imgLabels, sopArray.data(), sop, nLabels); sop.finish(); return nLabels; } };//End struct LabelingWuParallel //Based on "Two Strategies to Speed up Connected Components Algorithms", the SAUF (Scan Array-based Union Find) variant //using decision trees //Kesheng Wu et. al. template struct LabelingWu{ LabelT operator()(const cv::Mat& img, cv::Mat& imgLabels, int connectivity, StatsOp& sop){ CV_Assert(imgLabels.rows == img.rows); CV_Assert(imgLabels.cols == img.cols); CV_Assert(connectivity == 8 || connectivity == 4); const int h = img.rows; const int w = img.cols; //A quick and dirty upper bound for the maximum number of labels. //Following formula comes from the fact that a 2x2 block in 4-way connectivity //labeling can never have more than 2 new labels and 1 label for background. //Worst case image example pattern: //1 0 1 0 1... //0 1 0 1 0... //1 0 1 0 1... //............ //Obviously, 4-way connectivity upper bound is also good for 8-way connectivity labeling const size_t Plength = (size_t(h) * size_t(w) + 1) / 2 + 1; //array P for equivalences resolution std::vector P_(Plength, 0); LabelT *P = P_.data(); //first label is for background pixels //P[0] = 0; LabelT lunique = 1; if (connectivity == 8){ for (int r = 0; r < h; ++r){ // Get row pointers PixelT const * const img_row = img.ptr(r); PixelT const * const img_row_prev = (PixelT *)(((char *)img_row) - img.step.p[0]); LabelT * const imgLabels_row = imgLabels.ptr(r); LabelT * const imgLabels_row_prev = (LabelT *)(((char *)imgLabels_row) - imgLabels.step.p[0]); for (int c = 0; c < w; ++c){ #define condition_p c>0 && r>0 && img_row_prev[c - 1]>0 #define condition_q r>0 && img_row_prev[c]>0 #define condition_r c < w - 1 && r > 0 && img_row_prev[c + 1] > 0 #define condition_s c > 0 && img_row[c - 1] > 0 #define condition_x img_row[c] > 0 if (condition_x){ if (condition_q){ //x <- q imgLabels_row[c] = imgLabels_row_prev[c]; } else{ // q = 0 if (condition_r){ if (condition_p){ // x <- merge(p,r) imgLabels_row[c] = set_union(P, imgLabels_row_prev[c - 1], imgLabels_row_prev[c + 1]); } else{ // p = q = 0 if (condition_s){ // x <- merge(s,r) imgLabels_row[c] = set_union(P, imgLabels_row[c - 1], imgLabels_row_prev[c + 1]); } else{ // p = q = s = 0 // x <- r imgLabels_row[c] = imgLabels_row_prev[c + 1]; } } } else{ // r = q = 0 if (condition_p){ // x <- p imgLabels_row[c] = imgLabels_row_prev[c - 1]; } else{ // r = q = p = 0 if (condition_s){ imgLabels_row[c] = imgLabels_row[c - 1]; } else{ //new label imgLabels_row[c] = lunique; P[lunique] = lunique; lunique = lunique + 1; } } } } } else{ //x is a background pixel imgLabels_row[c] = 0; } } } #undef condition_p #undef condition_q #undef condition_r #undef condition_s #undef condition_x } else{ for (int r = 0; r < h; ++r){ PixelT const * const img_row = img.ptr(r); PixelT const * const img_row_prev = (PixelT *)(((char *)img_row) - img.step.p[0]); LabelT * const imgLabels_row = imgLabels.ptr(r); LabelT * const imgLabels_row_prev = (LabelT *)(((char *)imgLabels_row) - imgLabels.step.p[0]); for (int c = 0; c < w; ++c) { #define condition_q r > 0 && img_row_prev[c] > 0 #define condition_s c > 0 && img_row[c - 1] > 0 #define condition_x img_row[c] > 0 if (condition_x){ if (condition_q){ if (condition_s){ //Merge s->x->q imgLabels_row[c] = set_union(P, imgLabels_row[c - 1], imgLabels_row_prev[c]); } else{ //copy q imgLabels_row[c] = imgLabels_row_prev[c]; } } else{ if (condition_s){ // copy s imgLabels_row[c] = imgLabels_row[c - 1]; } else{ //new label imgLabels_row[c] = lunique; P[lunique] = lunique; lunique = lunique + 1; } } } else{ //x is a background pixel imgLabels_row[c] = 0; } } } #undef condition_q #undef condition_s #undef condition_x } //analysis LabelT nLabels = flattenL(P, lunique); sop.init(nLabels); for (int r = 0; r < h; ++r) { LabelT * img_row_start = imgLabels.ptr(r); LabelT * const img_row_end = img_row_start + w; for (int c = 0; img_row_start != img_row_end; ++img_row_start, ++c){ *img_row_start = P[*img_row_start]; sop(r, c, *img_row_start); } } sop.finish(); return nLabels; }//End function LabelingWu operator() };//End struct LabelingWu //Parallel implementation of BBDT (Block-Based with Decision Tree) algorithm, as described in "Two More Strategies to Speed //Up Connected Components Labeling Algorithms" //Federico Bolelli et. al. template struct LabelingGranaParallel{ class FirstScan : public cv::ParallelLoopBody{ private: const cv::Mat& img_; cv::Mat& imgLabels_; LabelT *P_; int *chunksSizeAndLabels_; public: FirstScan(const cv::Mat& img, cv::Mat& imgLabels, LabelT *P, int *chunksSizeAndLabels) : img_(img), imgLabels_(imgLabels), P_(P), chunksSizeAndLabels_(chunksSizeAndLabels){} FirstScan& operator=(const FirstScan&) { return *this; } void operator()(const cv::Range& range2) const CV_OVERRIDE { const Range range(range2.start * 2, std::min(range2.end * 2, img_.rows)); int r = range.start; chunksSizeAndLabels_[r] = range.end; LabelT label = stripeFirstLabel8Connectivity(r, imgLabels_.cols); const LabelT firstLabel = label; const int h = img_.rows, w = img_.cols; const int limitLine = r + 1, startR = r; for (; r < range.end; r += 2){ // Get rows pointer const PixelT * const img_row = img_.ptr(r); const PixelT * const img_row_prev = (PixelT *)(((char *)img_row) - img_.step.p[0]); const PixelT * const img_row_prev_prev = (PixelT *)(((char *)img_row_prev) - img_.step.p[0]); const PixelT * const img_row_fol = (PixelT *)(((char *)img_row) + img_.step.p[0]); LabelT * const imgLabels_row = imgLabels_.ptr(r); LabelT * const imgLabels_row_prev_prev = (LabelT *)(((char *)imgLabels_row) - imgLabels_.step.p[0] - imgLabels_.step.p[0]); for (int c = 0; c < w; c += 2) { // We work with 2x2 blocks // +-+-+-+ // |P|Q|R| // +-+-+-+ // |S|X| // +-+-+ // The pixels are named as follows // +---+---+---+ // |a b|c d|e f| // |g h|i j|k l| // +---+---+---+ // |m n|o p| // |q r|s t| // +---+---+ // Pixels a, f, l, q are not needed, since we need to understand the // the connectivity between these blocks and those pixels only matter // when considering the outer connectivities // A bunch of defines used to check if the pixels are foreground, // without going outside the image limits. #define condition_b c-1>=0 && r > limitLine && img_row_prev_prev[c-1]>0 #define condition_c r > limitLine && img_row_prev_prev[c]>0 #define condition_d c+1 limitLine && img_row_prev_prev[c+1]>0 #define condition_e c+2 limitLine && img_row_prev_prev[c+2]>0 #define condition_g c-2>=0 && r > limitLine - 1 && img_row_prev[c-2]>0 #define condition_h c-1>=0 && r > limitLine - 1 && img_row_prev[c-1]>0 #define condition_i r > limitLine - 1 && img_row_prev[c]>0 #define condition_j c+1 limitLine - 1 && img_row_prev[c+1]>0 #define condition_k c+2 limitLine - 1 && img_row_prev[c+2]>0 #define condition_m c-2>=0 && img_row[c-2]>0 #define condition_n c-1>=0 && img_row[c-1]>0 #define condition_o img_row[c]>0 #define condition_p c+10 #define condition_r c-1>=0 && r+10 #define condition_s r+10 #define condition_t c+10 // This is a decision tree which allows to choose which action to // perform, checking as few conditions as possible. // Actions are available after the tree. if (condition_o) { if (condition_n) { if (condition_j) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { if (condition_h) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_g) { if (condition_b) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { if (condition_p) { if (condition_k) { if (condition_d) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { if (condition_h) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_g) { if (condition_b) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } else { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } } else { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } } } else { if (condition_r) { if (condition_j) { if (condition_m) { if (condition_h) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { if (condition_g) { if (condition_b) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { if (condition_i) { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } else { if (condition_h) { if (condition_c) { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } else { //Action_14: Merge labels of block P_, Q and S imgLabels_row[c] = set_union(P_, set_union(P_, imgLabels_row_prev_prev[c - 2], imgLabels_row_prev_prev[c]), imgLabels_row[c - 2]); continue; } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } } else { if (condition_p) { if (condition_k) { if (condition_m) { if (condition_h) { if (condition_d) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } else { if (condition_d) { if (condition_g) { if (condition_b) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } else { if (condition_i) { if (condition_g) { if (condition_b) { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } else { //Action_16: labels of block Q, R and S imgLabels_row[c] = set_union(P_, set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row_prev_prev[c + 2]), imgLabels_row[c - 2]); continue; } } else { //Action_16: labels of block Q, R and S imgLabels_row[c] = set_union(P_, set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row_prev_prev[c + 2]), imgLabels_row[c - 2]); continue; } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } } else { if (condition_i) { if (condition_d) { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } else { //Action_16: labels of block Q, R and S imgLabels_row[c] = set_union(P_, set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row_prev_prev[c + 2]), imgLabels_row[c - 2]); continue; } } else { if (condition_h) { if (condition_d) { if (condition_c) { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } else { //Action_15: Merge labels of block P_, R and S imgLabels_row[c] = set_union(P_, set_union(P_, imgLabels_row_prev_prev[c - 2], imgLabels_row_prev_prev[c + 2]), imgLabels_row[c - 2]); continue; } } else { //Action_15: Merge labels of block P_, R and S imgLabels_row[c] = set_union(P_, set_union(P_, imgLabels_row_prev_prev[c - 2], imgLabels_row_prev_prev[c + 2]), imgLabels_row[c - 2]); continue; } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } } else { if (condition_h) { if (condition_m) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { // ACTION_9 Merge labels of block P_ and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c - 2], imgLabels_row[c - 2]); continue; } } else { if (condition_i) { if (condition_m) { if (condition_g) { if (condition_b) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } } } } else { if (condition_h) { if (condition_m) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { // ACTION_9 Merge labels of block P_ and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c - 2], imgLabels_row[c - 2]); continue; } } else { if (condition_i) { if (condition_m) { if (condition_g) { if (condition_b) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } } } } } else { if (condition_j) { if (condition_i) { //Action_4: Assign label of block Q imgLabels_row[c] = imgLabels_row_prev_prev[c]; continue; } else { if (condition_h) { if (condition_c) { //Action_4: Assign label of block Q imgLabels_row[c] = imgLabels_row_prev_prev[c]; continue; } else { //Action_7: Merge labels of block P_ and Q imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c - 2], imgLabels_row_prev_prev[c]); continue; } } else { //Action_4: Assign label of block Q imgLabels_row[c] = imgLabels_row_prev_prev[c]; continue; } } } else { if (condition_p) { if (condition_k) { if (condition_i) { if (condition_d) { //Action_5: Assign label of block R imgLabels_row[c] = imgLabels_row_prev_prev[c + 2]; continue; } else { // ACTION_10 Merge labels of block Q and R imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row_prev_prev[c + 2]); continue; } } else { if (condition_h) { if (condition_d) { if (condition_c) { //Action_5: Assign label of block R imgLabels_row[c] = imgLabels_row_prev_prev[c + 2]; continue; } else { //Action_8: Merge labels of block P_ and R imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c - 2], imgLabels_row_prev_prev[c + 2]); continue; } } else { //Action_8: Merge labels of block P_ and R imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c - 2], imgLabels_row_prev_prev[c + 2]); continue; } } else { //Action_5: Assign label of block R imgLabels_row[c] = imgLabels_row_prev_prev[c + 2]; continue; } } } else { if (condition_i) { //Action_4: Assign label of block Q imgLabels_row[c] = imgLabels_row_prev_prev[c]; continue; } else { if (condition_h) { //Action_3: Assign label of block P_ imgLabels_row[c] = imgLabels_row_prev_prev[c - 2]; continue; } else { //Action_2: New label (the block has foreground pixels and is not connected to anything else) imgLabels_row[c] = label; P_[label] = label; label = label + 1; continue; } } } } else { if (condition_i) { //Action_4: Assign label of block Q imgLabels_row[c] = imgLabels_row_prev_prev[c]; continue; } else { if (condition_h) { //Action_3: Assign label of block P_ imgLabels_row[c] = imgLabels_row_prev_prev[c - 2]; continue; } else { //Action_2: New label (the block has foreground pixels and is not connected to anything else) imgLabels_row[c] = label; P_[label] = label; label = label + 1; continue; } } } } } } } else { if (condition_s) { if (condition_p) { if (condition_n) { if (condition_j) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { if (condition_h) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_g) { if (condition_b) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { if (condition_k) { if (condition_d) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { if (condition_h) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_g) { if (condition_b) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } else { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } } } else { if (condition_r) { if (condition_j) { if (condition_m) { if (condition_h) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { if (condition_g) { if (condition_b) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { if (condition_k) { if (condition_d) { if (condition_m) { if (condition_h) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } else { if (condition_g) { if (condition_b) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } else { if (condition_i) { if (condition_m) { if (condition_h) { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } else { if (condition_g) { if (condition_b) { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } else { //Action_16: labels of block Q, R and S imgLabels_row[c] = set_union(P_, set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row_prev_prev[c + 2]), imgLabels_row[c - 2]); continue; } } else { //Action_16: labels of block Q, R and S imgLabels_row[c] = set_union(P_, set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row_prev_prev[c + 2]), imgLabels_row[c - 2]); continue; } } } else { //Action_16: labels of block Q, R and S imgLabels_row[c] = set_union(P_, set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row_prev_prev[c + 2]), imgLabels_row[c - 2]); continue; } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } else { if (condition_i) { if (condition_m) { if (condition_h) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_g) { if (condition_b) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } } } } else { if (condition_j) { //Action_4: Assign label of block Q imgLabels_row[c] = imgLabels_row_prev_prev[c]; continue; } else { if (condition_k) { if (condition_i) { if (condition_d) { //Action_5: Assign label of block R imgLabels_row[c] = imgLabels_row_prev_prev[c + 2]; continue; } else { // ACTION_10 Merge labels of block Q and R imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row_prev_prev[c + 2]); continue; } } else { //Action_5: Assign label of block R imgLabels_row[c] = imgLabels_row_prev_prev[c + 2]; continue; } } else { if (condition_i) { //Action_4: Assign label of block Q imgLabels_row[c] = imgLabels_row_prev_prev[c]; continue; } else { //Action_2: New label (the block has foreground pixels and is not connected to anything else) imgLabels_row[c] = label; P_[label] = label; label = label + 1; continue; } } } } } } else { if (condition_r) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_n) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_2: New label (the block has foreground pixels and is not connected to anything else) imgLabels_row[c] = label; P_[label] = label; label = label + 1; continue; } } } } else { if (condition_p) { if (condition_j) { //Action_4: Assign label of block Q imgLabels_row[c] = imgLabels_row_prev_prev[c]; continue; } else { if (condition_k) { if (condition_i) { if (condition_d) { //Action_5: Assign label of block R imgLabels_row[c] = imgLabels_row_prev_prev[c + 2]; continue; } else { // ACTION_10 Merge labels of block Q and R imgLabels_row[c] = set_union(P_, imgLabels_row_prev_prev[c], imgLabels_row_prev_prev[c + 2]); continue; } } else { //Action_5: Assign label of block R imgLabels_row[c] = imgLabels_row_prev_prev[c + 2]; continue; } } else { if (condition_i) { //Action_4: Assign label of block Q imgLabels_row[c] = imgLabels_row_prev_prev[c]; continue; } else { //Action_2: New label (the block has foreground pixels and is not connected to anything else) imgLabels_row[c] = label; P_[label] = label; label = label + 1; continue; } } } } else { if (condition_t) { //Action_2: New label (the block has foreground pixels and is not connected to anything else) imgLabels_row[c] = label; P_[label] = label; label = label + 1; continue; } else { // Action_1: No action (the block has no foreground pixels) imgLabels_row[c] = 0; continue; } } } } } } //write in the follower memory location chunksSizeAndLabels_[startR + 1] = label - firstLabel; } #undef condition_k #undef condition_j #undef condition_i #undef condition_h #undef condition_g #undef condition_e #undef condition_d #undef condition_c #undef condition_b }; class SecondScan : public cv::ParallelLoopBody{ private: const cv::Mat& img_; cv::Mat& imgLabels_; LabelT *P_; StatsOp& sop_; StatsOp *sopArray_; LabelT& nLabels_; public: SecondScan(const cv::Mat& img, cv::Mat& imgLabels, LabelT *P, StatsOp& sop, StatsOp *sopArray, LabelT& nLabels) : img_(img), imgLabels_(imgLabels), P_(P), sop_(sop), sopArray_(sopArray), nLabels_(nLabels){} void operator()(const cv::Range& range2) const CV_OVERRIDE { const Range range(range2.start * 2, std::min(range2.end * 2, img_.rows)); int r = range.start; const int rowBegin = r; const int rowEnd = range.end; if (rowBegin > 0){ sopArray_[rowBegin].initElement(nLabels_); sopArray_[rowBegin].setNextLoc(rowEnd); //_nextLoc = rowEnd; if (imgLabels_.rows& 1){ if (imgLabels_.cols& 1){ //Case 1: both rows and cols odd for (; r < rowEnd; r += 2){ // Get rows pointer const PixelT * const img_row = img_.ptr(r); const PixelT * const img_row_fol = (PixelT *)(((char *)img_row) + img_.step.p[0]); LabelT * const imgLabels_row = imgLabels_.ptr(r); LabelT * const imgLabels_row_fol = (LabelT *)(((char *)imgLabels_row) + imgLabels_.step.p[0]); // Get rows pointer for (int c = 0; c < imgLabels_.cols; c += 2) { LabelT iLabel = imgLabels_row[c]; if (iLabel > 0) { iLabel = P_[iLabel]; if (img_row[c] > 0){ imgLabels_row[c] = iLabel; sopArray_[rowBegin](r, c, iLabel); } else{ imgLabels_row[c] = 0; sopArray_[rowBegin](r, c, 0); } if (c + 1 < imgLabels_.cols) { if (img_row[c + 1] > 0){ imgLabels_row[c + 1] = iLabel; sopArray_[rowBegin](r, c + 1, iLabel); } else{ imgLabels_row[c + 1] = 0; sopArray_[rowBegin](r, c + 1, 0); } if (r + 1 < imgLabels_.rows) { if (img_row_fol[c] > 0){ imgLabels_row_fol[c] = iLabel; sopArray_[rowBegin](r + 1, c, iLabel); } else{ imgLabels_row_fol[c] = 0; sopArray_[rowBegin](r + 1, c, 0); } if (img_row_fol[c + 1] > 0){ imgLabels_row_fol[c + 1] = iLabel; sopArray_[rowBegin](r + 1, c + 1, iLabel); } else{ imgLabels_row_fol[c + 1] = 0; sopArray_[rowBegin](r + 1, c + 1, 0); } } } else if (r + 1 < imgLabels_.rows) { if (img_row_fol[c] > 0){ imgLabels_row_fol[c] = iLabel; sopArray_[rowBegin](r + 1, c, iLabel); } else{ imgLabels_row_fol[c] = 0; sopArray_[rowBegin](r + 1, c, 0); } } } else { imgLabels_row[c] = 0; sopArray_[rowBegin](r, c, 0); if (c + 1 < imgLabels_.cols) { imgLabels_row[c + 1] = 0; sopArray_[rowBegin](r, c + 1, 0); if (r + 1 < imgLabels_.rows) { imgLabels_row_fol[c] = 0; imgLabels_row_fol[c + 1] = 0; sopArray_[rowBegin](r + 1, c, 0); sopArray_[rowBegin](r + 1, c + 1, 0); } } else if (r + 1 < imgLabels_.rows) { imgLabels_row_fol[c] = 0; sopArray_[rowBegin](r + 1, c, 0); } } } } }//END Case 1 else{ //Case 2: only rows odd for (; r < rowEnd; r += 2){ // Get rows pointer const PixelT * const img_row = img_.ptr(r); const PixelT * const img_row_fol = (PixelT *)(((char *)img_row) + img_.step.p[0]); LabelT * const imgLabels_row = imgLabels_.ptr(r); LabelT * const imgLabels_row_fol = (LabelT *)(((char *)imgLabels_row) + imgLabels_.step.p[0]); // Get rows pointer for (int c = 0; c < imgLabels_.cols; c += 2) { LabelT iLabel = imgLabels_row[c]; if (iLabel > 0) { iLabel = P_[iLabel]; if (img_row[c] > 0){ imgLabels_row[c] = iLabel; sopArray_[rowBegin](r, c, iLabel); } else{ imgLabels_row[c] = 0; sopArray_[rowBegin](r, c, 0); } if (img_row[c + 1] > 0){ imgLabels_row[c + 1] = iLabel; sopArray_[rowBegin](r, c + 1, iLabel); } else{ imgLabels_row[c + 1] = 0; sopArray_[rowBegin](r, c + 1, 0); } if (r + 1 < imgLabels_.rows) { if (img_row_fol[c] > 0){ imgLabels_row_fol[c] = iLabel; sopArray_[rowBegin](r + 1, c, iLabel); } else{ imgLabels_row_fol[c] = 0; sopArray_[rowBegin](r + 1, c, 0); } if (img_row_fol[c + 1] > 0){ imgLabels_row_fol[c + 1] = iLabel; sopArray_[rowBegin](r + 1, c + 1, iLabel); } else{ imgLabels_row_fol[c + 1] = 0; sopArray_[rowBegin](r + 1, c + 1, 0); } } } else { imgLabels_row[c] = 0; imgLabels_row[c + 1] = 0; sopArray_[rowBegin](r, c, 0); sopArray_[rowBegin](r, c + 1, 0); if (r + 1 < imgLabels_.rows) { imgLabels_row_fol[c] = 0; imgLabels_row_fol[c + 1] = 0; sopArray_[rowBegin](r + 1, c, 0); sopArray_[rowBegin](r + 1, c + 1, 0); } } } } }// END Case 2 } else{ if (imgLabels_.cols& 1){ //Case 3: only cols odd for (; r < rowEnd; r += 2){ // Get rows pointer const PixelT * const img_row = img_.ptr(r); const PixelT * const img_row_fol = (PixelT *)(((char *)img_row) + img_.step.p[0]); LabelT * const imgLabels_row = imgLabels_.ptr(r); LabelT * const imgLabels_row_fol = (LabelT *)(((char *)imgLabels_row) + imgLabels_.step.p[0]); // Get rows pointer for (int c = 0; c < imgLabels_.cols; c += 2) { LabelT iLabel = imgLabels_row[c]; if (iLabel > 0) { iLabel = P_[iLabel]; if (img_row[c] > 0){ imgLabels_row[c] = iLabel; sopArray_[rowBegin](r, c, iLabel); } else{ imgLabels_row[c] = 0; sopArray_[rowBegin](r, c, 0); } if (img_row_fol[c] > 0){ imgLabels_row_fol[c] = iLabel; sopArray_[rowBegin](r + 1, c, iLabel); } else{ imgLabels_row_fol[c] = 0; sopArray_[rowBegin](r + 1, c, 0); } if (c + 1 < imgLabels_.cols) { if (img_row[c + 1] > 0){ imgLabels_row[c + 1] = iLabel; sopArray_[rowBegin](r, c + 1, iLabel); } else{ imgLabels_row[c + 1] = 0; sopArray_[rowBegin](r, c + 1, 0); } if (img_row_fol[c + 1] > 0){ imgLabels_row_fol[c + 1] = iLabel; sopArray_[rowBegin](r + 1, c + 1, iLabel); } else{ imgLabels_row_fol[c + 1] = 0; sopArray_[rowBegin](r + 1, c + 1, 0); } } } else{ imgLabels_row[c] = 0; imgLabels_row_fol[c] = 0; sopArray_[rowBegin](r, c, 0); sopArray_[rowBegin](r + 1, c, 0); if (c + 1 < imgLabels_.cols) { imgLabels_row[c + 1] = 0; imgLabels_row_fol[c + 1] = 0; sopArray_[rowBegin](r, c + 1, 0); sopArray_[rowBegin](r + 1, c + 1, 0); } } } } }// END case 3 else{ //Case 4: nothing odd for (; r < rowEnd; r += 2){ // Get rows pointer const PixelT * const img_row = img_.ptr(r); const PixelT * const img_row_fol = (PixelT *)(((char *)img_row) + img_.step.p[0]); LabelT * const imgLabels_row = imgLabels_.ptr(r); LabelT * const imgLabels_row_fol = (LabelT *)(((char *)imgLabels_row) + imgLabels_.step.p[0]); // Get rows pointer for (int c = 0; c < imgLabels_.cols; c += 2) { LabelT iLabel = imgLabels_row[c]; if (iLabel > 0) { iLabel = P_[iLabel]; if (img_row[c] > 0){ imgLabels_row[c] = iLabel; sopArray_[rowBegin](r, c, iLabel); } else{ imgLabels_row[c] = 0; sopArray_[rowBegin](r, c, 0); } if (img_row[c + 1] > 0){ imgLabels_row[c + 1] = iLabel; sopArray_[rowBegin](r, c + 1, iLabel); } else{ imgLabels_row[c + 1] = 0; sopArray_[rowBegin](r, c + 1, 0); } if (img_row_fol[c] > 0){ imgLabels_row_fol[c] = iLabel; sopArray_[rowBegin](r + 1, c, iLabel); } else{ imgLabels_row_fol[c] = 0; sopArray_[rowBegin](r + 1, c, 0); } if (img_row_fol[c + 1] > 0){ imgLabels_row_fol[c + 1] = iLabel; sopArray_[rowBegin](r + 1, c + 1, iLabel); } else{ imgLabels_row_fol[c + 1] = 0; sopArray_[rowBegin](r + 1, c + 1, 0); } } else { imgLabels_row[c] = 0; imgLabels_row[c + 1] = 0; imgLabels_row_fol[c] = 0; imgLabels_row_fol[c + 1] = 0; sopArray_[rowBegin](r, c, 0); sopArray_[rowBegin](r, c + 1, 0); sopArray_[rowBegin](r + 1, c, 0); sopArray_[rowBegin](r + 1, c + 1, 0); } } }//END case 4 } } } else{ //the first thread uses sop in order to make less merges sop_.setNextLoc(rowEnd); if (imgLabels_.rows& 1){ if (imgLabels_.cols& 1){ //Case 1: both rows and cols odd for (; r < rowEnd; r += 2){ // Get rows pointer const PixelT * const img_row = img_.ptr(r); const PixelT * const img_row_fol = (PixelT *)(((char *)img_row) + img_.step.p[0]); LabelT * const imgLabels_row = imgLabels_.ptr(r); LabelT * const imgLabels_row_fol = (LabelT *)(((char *)imgLabels_row) + imgLabels_.step.p[0]); // Get rows pointer for (int c = 0; c < imgLabels_.cols; c += 2) { LabelT iLabel = imgLabels_row[c]; if (iLabel > 0) { iLabel = P_[iLabel]; if (img_row[c] > 0){ imgLabels_row[c] = iLabel; sop_(r, c, iLabel); } else{ imgLabels_row[c] = 0; sop_(r, c, 0); } if (c + 1 < imgLabels_.cols) { if (img_row[c + 1] > 0){ imgLabels_row[c + 1] = iLabel; sop_(r, c + 1, iLabel); } else{ imgLabels_row[c + 1] = 0; sop_(r, c + 1, 0); } if (r + 1 < imgLabels_.rows) { if (img_row_fol[c] > 0){ imgLabels_row_fol[c] = iLabel; sop_(r + 1, c, iLabel); } else{ imgLabels_row_fol[c] = 0; sop_(r + 1, c, 0); } if (img_row_fol[c + 1] > 0){ imgLabels_row_fol[c + 1] = iLabel; sop_(r + 1, c + 1, iLabel); } else{ imgLabels_row_fol[c + 1] = 0; sop_(r + 1, c + 1, 0); } } } else if (r + 1 < imgLabels_.rows) { if (img_row_fol[c] > 0){ imgLabels_row_fol[c] = iLabel; sop_(r + 1, c, iLabel); } else{ imgLabels_row_fol[c] = 0; sop_(r + 1, c, 0); } } } else { imgLabels_row[c] = 0; sop_(r, c, 0); if (c + 1 < imgLabels_.cols) { imgLabels_row[c + 1] = 0; sop_(r, c + 1, 0); if (r + 1 < imgLabels_.rows) { imgLabels_row_fol[c] = 0; imgLabels_row_fol[c + 1] = 0; sop_(r + 1, c, 0); sop_(r + 1, c + 1, 0); } } else if (r + 1 < imgLabels_.rows) { imgLabels_row_fol[c] = 0; sop_(r + 1, c, 0); } } } } }//END Case 1 else{ //Case 2: only rows odd for (; r < rowEnd; r += 2){ // Get rows pointer const PixelT * const img_row = img_.ptr(r); const PixelT * const img_row_fol = (PixelT *)(((char *)img_row) + img_.step.p[0]); LabelT * const imgLabels_row = imgLabels_.ptr(r); LabelT * const imgLabels_row_fol = (LabelT *)(((char *)imgLabels_row) + imgLabels_.step.p[0]); // Get rows pointer for (int c = 0; c < imgLabels_.cols; c += 2) { LabelT iLabel = imgLabels_row[c]; if (iLabel > 0) { iLabel = P_[iLabel]; if (img_row[c] > 0){ imgLabels_row[c] = iLabel; sop_(r, c, iLabel); } else{ imgLabels_row[c] = 0; sop_(r, c, 0); } if (img_row[c + 1] > 0){ imgLabels_row[c + 1] = iLabel; sop_(r, c + 1, iLabel); } else{ imgLabels_row[c + 1] = 0; sop_(r, c + 1, 0); } if (r + 1 < imgLabels_.rows) { if (img_row_fol[c] > 0){ imgLabels_row_fol[c] = iLabel; sop_(r + 1, c, iLabel); } else{ imgLabels_row_fol[c] = 0; sop_(r + 1, c, 0); } if (img_row_fol[c + 1] > 0){ imgLabels_row_fol[c + 1] = iLabel; sop_(r + 1, c + 1, iLabel); } else{ imgLabels_row_fol[c + 1] = 0; sop_(r + 1, c + 1, 0); } } } else { imgLabels_row[c] = 0; imgLabels_row[c + 1] = 0; sop_(r, c, 0); sop_(r, c + 1, 0); if (r + 1 < imgLabels_.rows) { imgLabels_row_fol[c] = 0; imgLabels_row_fol[c + 1] = 0; sop_(r + 1, c, 0); sop_(r + 1, c + 1, 0); } } } } }// END Case 2 } else{ if (imgLabels_.cols& 1){ //Case 3: only cols odd for (; r < rowEnd; r += 2){ // Get rows pointer const PixelT * const img_row = img_.ptr(r); const PixelT * const img_row_fol = (PixelT *)(((char *)img_row) + img_.step.p[0]); LabelT * const imgLabels_row = imgLabels_.ptr(r); LabelT * const imgLabels_row_fol = (LabelT *)(((char *)imgLabels_row) + imgLabels_.step.p[0]); // Get rows pointer for (int c = 0; c < imgLabels_.cols; c += 2) { LabelT iLabel = imgLabels_row[c]; if (iLabel > 0) { iLabel = P_[iLabel]; if (img_row[c] > 0){ imgLabels_row[c] = iLabel; sop_(r, c, iLabel); } else{ imgLabels_row[c] = 0; sop_(r, c, 0); } if (img_row_fol[c] > 0){ imgLabels_row_fol[c] = iLabel; sop_(r + 1, c, iLabel); } else{ imgLabels_row_fol[c] = 0; sop_(r + 1, c, 0); } if (c + 1 < imgLabels_.cols) { if (img_row[c + 1] > 0){ imgLabels_row[c + 1] = iLabel; sop_(r, c + 1, iLabel); } else{ imgLabels_row[c + 1] = 0; sop_(r, c + 1, 0); } if (img_row_fol[c + 1] > 0){ imgLabels_row_fol[c + 1] = iLabel; sop_(r + 1, c + 1, iLabel); } else{ imgLabels_row_fol[c + 1] = 0; sop_(r + 1, c + 1, 0); } } } else{ imgLabels_row[c] = 0; imgLabels_row_fol[c] = 0; sop_(r, c, 0); sop_(r + 1, c, 0); if (c + 1 < imgLabels_.cols) { imgLabels_row[c + 1] = 0; imgLabels_row_fol[c + 1] = 0; sop_(r, c + 1, 0); sop_(r + 1, c + 1, 0); } } } } }// END case 3 else{ //Case 4: nothing odd for (; r < rowEnd; r += 2){ // Get rows pointer const PixelT * const img_row = img_.ptr(r); const PixelT * const img_row_fol = (PixelT *)(((char *)img_row) + img_.step.p[0]); LabelT * const imgLabels_row = imgLabels_.ptr(r); LabelT * const imgLabels_row_fol = (LabelT *)(((char *)imgLabels_row) + imgLabels_.step.p[0]); // Get rows pointer for (int c = 0; c < imgLabels_.cols; c += 2) { LabelT iLabel = imgLabels_row[c]; if (iLabel > 0) { iLabel = P_[iLabel]; if (img_row[c] > 0){ imgLabels_row[c] = iLabel; sop_(r, c, iLabel); } else{ imgLabels_row[c] = 0; sop_(r, c, 0); } if (img_row[c + 1] > 0){ imgLabels_row[c + 1] = iLabel; sop_(r, c + 1, iLabel); } else{ imgLabels_row[c + 1] = 0; sop_(r, c + 1, 0); } if (img_row_fol[c] > 0){ imgLabels_row_fol[c] = iLabel; sop_(r + 1, c, iLabel); } else{ imgLabels_row_fol[c] = 0; sop_(r + 1, c, 0); } if (img_row_fol[c + 1] > 0){ imgLabels_row_fol[c + 1] = iLabel; sop_(r + 1, c + 1, iLabel); } else{ imgLabels_row_fol[c + 1] = 0; sop_(r + 1, c + 1, 0); } } else { imgLabels_row[c] = 0; imgLabels_row[c + 1] = 0; imgLabels_row_fol[c] = 0; imgLabels_row_fol[c + 1] = 0; sop_(r, c, 0); sop_(r, c + 1, 0); sop_(r + 1, c, 0); sop_(r + 1, c + 1, 0); } } }//END case 4 } } } } }; inline static void mergeLabels(const cv::Mat& img, cv::Mat& imgLabels, LabelT *P, int *chunksSizeAndLabels){ // Merge Mask // +---+---+---+ // |P -|Q -|R -| // |- -|- -|- -| // +---+---+---+ // |X -| // |- -| // +---+ const int w = imgLabels.cols, h = imgLabels.rows; for (int r = chunksSizeAndLabels[0]; r < h; r = chunksSizeAndLabels[r]){ LabelT * const imgLabels_row = imgLabels.ptr(r); LabelT * const imgLabels_row_prev_prev = (LabelT *)(((char *)imgLabels_row) - imgLabels.step.p[0] - imgLabels.step.p[0]); const PixelT * const img_row = img.ptr(r); const PixelT * const img_row_prev = (PixelT *)(((char *)img_row) - img.step.p[0]); for (int c = 0; c < w; c += 2){ #define condition_x imgLabels_row[c] > 0 #define condition_pppr c > 1 && imgLabels_row_prev_prev[c - 2] > 0 #define condition_qppr imgLabels_row_prev_prev[c] > 0 #define condition_qppr1 c < w - 1 #define condition_qppr2 c < w #define condition_rppr c < w - 2 && imgLabels_row_prev_prev[c + 2] > 0 if (condition_x){ if (condition_pppr){ //check in img if (img_row[c] > 0 && img_row_prev[c - 1] > 0) //assign the same label imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c - 2], imgLabels_row[c]); } if (condition_qppr){ if (condition_qppr1){ if ((img_row[c] > 0 && img_row_prev[c] > 0) || (img_row[c + 1] > 0 && img_row_prev[c] > 0) || (img_row[c] > 0 && img_row_prev[c + 1] > 0) || (img_row[c + 1] > 0 && img_row_prev[c + 1] > 0)){ imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c]); } } else /*if (condition_qppr2)*/{ if (img_row[c] > 0 && img_row_prev[c] > 0) imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c]); } } if (condition_rppr){ if (img_row[c + 1] > 0 && img_row_prev[c + 2] > 0) imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c]); } } } } } LabelT operator()(const cv::Mat& img, cv::Mat& imgLabels, int connectivity, StatsOp& sop){ CV_Assert(img.rows == imgLabels.rows); CV_Assert(img.cols == imgLabels.cols); CV_Assert(connectivity == 8); const int h = img.rows; const int w = img.cols; //A quick and dirty upper bound for the maximum number of labels. //Following formula comes from the fact that a 2x2 block in 8-connectivity case //can never have more than 1 new label and 1 label for background. //Worst case image example pattern: //1 0 1 0 1... //0 0 0 0 0... //1 0 1 0 1... //............ const size_t Plength = size_t(((h + 1) / 2) * size_t((w + 1) / 2)) + 1; //Array used to store info and labeled pixel by each thread. //Different threads affect different memory location of chunksSizeAndLabels const int chunksSizeAndLabelsSize = roundUp(h, 2); std::vector chunksSizeAndLabels(chunksSizeAndLabelsSize); //Tree of labels std::vector P(Plength, 0); //First label is for background //P[0] = 0; cv::Range range2(0, divUp(h, 2)); const double nParallelStripes = std::max(1, std::min(h / 2, getNumThreads()*4)); //First scan cv::parallel_for_(range2, FirstScan(img, imgLabels, P.data(), chunksSizeAndLabels.data()), nParallelStripes); //merge labels of different chunks mergeLabels(img, imgLabels, P.data(), chunksSizeAndLabels.data()); LabelT nLabels = 1; for (int i = 0; i < h; i = chunksSizeAndLabels[i]){ CV_DbgAssert(i + 1 < chunksSizeAndLabelsSize); flattenL(P.data(), stripeFirstLabel8Connectivity(i, w), chunksSizeAndLabels[i + 1], nLabels); } //Array for statistics data std::vector sopArray(h); sop.init(nLabels); //Second scan cv::parallel_for_(range2, SecondScan(img, imgLabels, P.data(), sop, sopArray.data(), nLabels), nParallelStripes); StatsOp::mergeStats(imgLabels, sopArray.data(), sop, nLabels); sop.finish(); return nLabels; } };//End struct LabelingGranaParallel //Implementation of BBDT (Block-Based with Decision Tree) algorithm, as described in "Optimized Block-based Connected //Components Labeling with Decision Trees" (only for 8-connectivity) //Costantino Grana et. al. template struct LabelingGrana{ LabelT operator()(const cv::Mat& img, cv::Mat& imgLabels, int connectivity, StatsOp& sop){ CV_Assert(img.rows == imgLabels.rows); CV_Assert(img.cols == imgLabels.cols); CV_Assert(connectivity == 8); const int h = img.rows; const int w = img.cols; //A quick and dirty upper bound for the maximum number of labels. //Following formula comes from the fact that a 2x2 block in 8-connectivity case //can never have more than 1 new label and 1 label for background. //Worst case image example pattern: //1 0 1 0 1... //0 0 0 0 0... //1 0 1 0 1... //............ const size_t Plength = size_t(((h + 1) / 2) * size_t((w + 1) / 2)) + 1; std::vector P_(Plength, 0); LabelT *P = P_.data(); //P[0] = 0; LabelT lunique = 1; // First scan for (int r = 0; r < h; r += 2) { // Get rows pointer const PixelT * const img_row = img.ptr(r); const PixelT * const img_row_prev = (PixelT *)(((char *)img_row) - img.step.p[0]); const PixelT * const img_row_prev_prev = (PixelT *)(((char *)img_row_prev) - img.step.p[0]); const PixelT * const img_row_fol = (PixelT *)(((char *)img_row) + img.step.p[0]); LabelT * const imgLabels_row = imgLabels.ptr(r); LabelT * const imgLabels_row_prev_prev = (LabelT *)(((char *)imgLabels_row) - imgLabels.step.p[0] - imgLabels.step.p[0]); for (int c = 0; c < w; c += 2) { // We work with 2x2 blocks // +-+-+-+ // |P|Q|R| // +-+-+-+ // |S|X| // +-+-+ // The pixels are named as follows // +---+---+---+ // |a b|c d|e f| // |g h|i j|k l| // +---+---+---+ // |m n|o p| // |q r|s t| // +---+---+ // Pixels a, f, l, q are not needed, since we need to understand the // the connectivity between these blocks and those pixels only matter // when considering the outer connectivities // A bunch of defines used to check if the pixels are foreground, // without going outside the image limits. #define condition_b c-1>=0 && r-2>=0 && img_row_prev_prev[c-1]>0 #define condition_c r-2>=0 && img_row_prev_prev[c]>0 #define condition_d c+1=0 && img_row_prev_prev[c+1]>0 #define condition_e c+2=0 && img_row_prev[c-1]>0 #define condition_g c-2>=0 && r-1>=0 && img_row_prev[c-2]>0 #define condition_h c-1>=0 && r-1>=0 && img_row_prev[c-1]>0 #define condition_i r-1>=0 && img_row_prev[c]>0 #define condition_j c+1=0 && img_row_prev[c+1]>0 #define condition_k c+2=0 && img_row_prev[c+2]>0 #define condition_m c-2>=0 && img_row[c-2]>0 #define condition_n c-1>=0 && img_row[c-1]>0 #define condition_o img_row[c]>0 #define condition_p c+10 #define condition_r c-1>=0 && r+10 #define condition_s r+10 #define condition_t c+10 // This is a decision tree which allows to choose which action to // perform, checking as few conditions as possible. // Actions: the blocks label are provisionally stored in the top left // pixel of the block in the labels image if (condition_o) { if (condition_n) { if (condition_j) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { if (condition_h) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_g) { if (condition_b) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { if (condition_p) { if (condition_k) { if (condition_d) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { if (condition_h) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_g) { if (condition_b) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } else { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } } else { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } } } else { if (condition_r) { if (condition_j) { if (condition_m) { if (condition_h) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { if (condition_g) { if (condition_b) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { if (condition_i) { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } else { if (condition_h) { if (condition_c) { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } else { //Action_14: Merge labels of block P, Q and S imgLabels_row[c] = set_union(P, set_union(P, imgLabels_row_prev_prev[c - 2], imgLabels_row_prev_prev[c]), imgLabels_row[c - 2]); continue; } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } } else { if (condition_p) { if (condition_k) { if (condition_m) { if (condition_h) { if (condition_d) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } else { if (condition_d) { if (condition_g) { if (condition_b) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } else { if (condition_i) { if (condition_g) { if (condition_b) { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } else { //Action_16: labels of block Q, R and S imgLabels_row[c] = set_union(P, set_union(P, imgLabels_row_prev_prev[c], imgLabels_row_prev_prev[c + 2]), imgLabels_row[c - 2]); continue; } } else { //Action_16: labels of block Q, R and S imgLabels_row[c] = set_union(P, set_union(P, imgLabels_row_prev_prev[c], imgLabels_row_prev_prev[c + 2]), imgLabels_row[c - 2]); continue; } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } } else { if (condition_i) { if (condition_d) { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } else { //Action_16: labels of block Q, R and S imgLabels_row[c] = set_union(P, set_union(P, imgLabels_row_prev_prev[c], imgLabels_row_prev_prev[c + 2]), imgLabels_row[c - 2]); continue; } } else { if (condition_h) { if (condition_d) { if (condition_c) { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } else { //Action_15: Merge labels of block P, R and S imgLabels_row[c] = set_union(P, set_union(P, imgLabels_row_prev_prev[c - 2], imgLabels_row_prev_prev[c + 2]), imgLabels_row[c - 2]); continue; } } else { //Action_15: Merge labels of block P, R and S imgLabels_row[c] = set_union(P, set_union(P, imgLabels_row_prev_prev[c - 2], imgLabels_row_prev_prev[c + 2]), imgLabels_row[c - 2]); continue; } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } } else { if (condition_h) { if (condition_m) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { // ACTION_9 Merge labels of block P and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c - 2], imgLabels_row[c - 2]); continue; } } else { if (condition_i) { if (condition_m) { if (condition_g) { if (condition_b) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } } } } else { if (condition_h) { if (condition_m) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { // ACTION_9 Merge labels of block P and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c - 2], imgLabels_row[c - 2]); continue; } } else { if (condition_i) { if (condition_m) { if (condition_g) { if (condition_b) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } } } } } else { if (condition_j) { if (condition_i) { //Action_4: Assign label of block Q imgLabels_row[c] = imgLabels_row_prev_prev[c]; continue; } else { if (condition_h) { if (condition_c) { //Action_4: Assign label of block Q imgLabels_row[c] = imgLabels_row_prev_prev[c]; continue; } else { //Action_7: Merge labels of block P and Q imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c - 2], imgLabels_row_prev_prev[c]); continue; } } else { //Action_4: Assign label of block Q imgLabels_row[c] = imgLabels_row_prev_prev[c]; continue; } } } else { if (condition_p) { if (condition_k) { if (condition_i) { if (condition_d) { //Action_5: Assign label of block R imgLabels_row[c] = imgLabels_row_prev_prev[c + 2]; continue; } else { // ACTION_10 Merge labels of block Q and R imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row_prev_prev[c + 2]); continue; } } else { if (condition_h) { if (condition_d) { if (condition_c) { //Action_5: Assign label of block R imgLabels_row[c] = imgLabels_row_prev_prev[c + 2]; continue; } else { //Action_8: Merge labels of block P and R imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c - 2], imgLabels_row_prev_prev[c + 2]); continue; } } else { //Action_8: Merge labels of block P and R imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c - 2], imgLabels_row_prev_prev[c + 2]); continue; } } else { //Action_5: Assign label of block R imgLabels_row[c] = imgLabels_row_prev_prev[c + 2]; continue; } } } else { if (condition_i) { //Action_4: Assign label of block Q imgLabels_row[c] = imgLabels_row_prev_prev[c]; continue; } else { if (condition_h) { //Action_3: Assign label of block P imgLabels_row[c] = imgLabels_row_prev_prev[c - 2]; continue; } else { //Action_2: New label (the block has foreground pixels and is not connected to anything else) imgLabels_row[c] = lunique; P[lunique] = lunique; lunique = lunique + 1; continue; } } } } else { if (condition_i) { //Action_4: Assign label of block Q imgLabels_row[c] = imgLabels_row_prev_prev[c]; continue; } else { if (condition_h) { //Action_3: Assign label of block P imgLabels_row[c] = imgLabels_row_prev_prev[c - 2]; continue; } else { //Action_2: New label (the block has foreground pixels and is not connected to anything else) imgLabels_row[c] = lunique; P[lunique] = lunique; lunique = lunique + 1; continue; } } } } } } } else { if (condition_s) { if (condition_p) { if (condition_n) { if (condition_j) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { if (condition_h) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_g) { if (condition_b) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { if (condition_k) { if (condition_d) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { if (condition_h) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_g) { if (condition_b) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } else { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } } } else { if (condition_r) { if (condition_j) { if (condition_m) { if (condition_h) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { if (condition_g) { if (condition_b) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { if (condition_k) { if (condition_d) { if (condition_m) { if (condition_h) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } else { if (condition_g) { if (condition_b) { if (condition_i) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_c) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } else { if (condition_i) { if (condition_m) { if (condition_h) { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } else { if (condition_g) { if (condition_b) { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } else { //Action_16: labels of block Q, R and S imgLabels_row[c] = set_union(P, set_union(P, imgLabels_row_prev_prev[c], imgLabels_row_prev_prev[c + 2]), imgLabels_row[c - 2]); continue; } } else { //Action_16: labels of block Q, R and S imgLabels_row[c] = set_union(P, set_union(P, imgLabels_row_prev_prev[c], imgLabels_row_prev_prev[c + 2]), imgLabels_row[c - 2]); continue; } } } else { //Action_16: labels of block Q, R and S imgLabels_row[c] = set_union(P, set_union(P, imgLabels_row_prev_prev[c], imgLabels_row_prev_prev[c + 2]), imgLabels_row[c - 2]); continue; } } else { //Action_12: Merge labels of block R and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c + 2], imgLabels_row[c - 2]); continue; } } } else { if (condition_i) { if (condition_m) { if (condition_h) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_g) { if (condition_b) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } } else { //Action_11: Merge labels of block Q and S imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row[c - 2]); continue; } } else { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } } } } else { if (condition_j) { //Action_4: Assign label of block Q imgLabels_row[c] = imgLabels_row_prev_prev[c]; continue; } else { if (condition_k) { if (condition_i) { if (condition_d) { //Action_5: Assign label of block R imgLabels_row[c] = imgLabels_row_prev_prev[c + 2]; continue; } else { // ACTION_10 Merge labels of block Q and R imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row_prev_prev[c + 2]); continue; } } else { //Action_5: Assign label of block R imgLabels_row[c] = imgLabels_row_prev_prev[c + 2]; continue; } } else { if (condition_i) { //Action_4: Assign label of block Q imgLabels_row[c] = imgLabels_row_prev_prev[c]; continue; } else { //Action_2: New label (the block has foreground pixels and is not connected to anything else) imgLabels_row[c] = lunique; P[lunique] = lunique; lunique = lunique + 1; continue; } } } } } } else { if (condition_r) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { if (condition_n) { //Action_6: Assign label of block S imgLabels_row[c] = imgLabels_row[c - 2]; continue; } else { //Action_2: New label (the block has foreground pixels and is not connected to anything else) imgLabels_row[c] = lunique; P[lunique] = lunique; lunique = lunique + 1; continue; } } } } else { if (condition_p) { if (condition_j) { //Action_4: Assign label of block Q imgLabels_row[c] = imgLabels_row_prev_prev[c]; continue; } else { if (condition_k) { if (condition_i) { if (condition_d) { //Action_5: Assign label of block R imgLabels_row[c] = imgLabels_row_prev_prev[c + 2]; continue; } else { // ACTION_10 Merge labels of block Q and R imgLabels_row[c] = set_union(P, imgLabels_row_prev_prev[c], imgLabels_row_prev_prev[c + 2]); continue; } } else { //Action_5: Assign label of block R imgLabels_row[c] = imgLabels_row_prev_prev[c + 2]; continue; } } else { if (condition_i) { //Action_4: Assign label of block Q imgLabels_row[c] = imgLabels_row_prev_prev[c]; continue; } else { //Action_2: New label (the block has foreground pixels and is not connected to anything else) imgLabels_row[c] = lunique; P[lunique] = lunique; lunique = lunique + 1; continue; } } } } else { if (condition_t) { //Action_2: New label (the block has foreground pixels and is not connected to anything else) imgLabels_row[c] = lunique; P[lunique] = lunique; lunique = lunique + 1; continue; } else { // Action_1: No action (the block has no foreground pixels) imgLabels_row[c] = 0; continue; } } } } } } // Second scan + analysis LabelT nLabels = flattenL(P, lunique); sop.init(nLabels); if (imgLabels.rows & 1){ if (imgLabels.cols & 1){ //Case 1: both rows and cols odd for (int r = 0; r < imgLabels.rows; r += 2) { // Get rows pointer const PixelT * const img_row = img.ptr(r); const PixelT * const img_row_fol = (PixelT *)(((char *)img_row) + img.step.p[0]); LabelT * const imgLabels_row = imgLabels.ptr(r); LabelT * const imgLabels_row_fol = (LabelT *)(((char *)imgLabels_row) + imgLabels.step.p[0]); for (int c = 0; c < imgLabels.cols; c += 2) { LabelT iLabel = imgLabels_row[c]; if (iLabel > 0) { iLabel = P[iLabel]; if (img_row[c] > 0){ imgLabels_row[c] = iLabel; sop(r, c, iLabel); } else{ imgLabels_row[c] = 0; sop(r, c, 0); } if (c + 1 < imgLabels.cols) { if (img_row[c + 1] > 0){ imgLabels_row[c + 1] = iLabel; sop(r, c + 1, iLabel); } else{ imgLabels_row[c + 1] = 0; sop(r, c + 1, 0); } if (r + 1 < imgLabels.rows) { if (img_row_fol[c] > 0){ imgLabels_row_fol[c] = iLabel; sop(r + 1, c, iLabel); } else{ imgLabels_row_fol[c] = 0; sop(r + 1, c, 0); } if (img_row_fol[c + 1] > 0){ imgLabels_row_fol[c + 1] = iLabel; sop(r + 1, c + 1, iLabel); } else{ imgLabels_row_fol[c + 1] = 0; sop(r + 1, c + 1, 0); } } } else if (r + 1 < imgLabels.rows) { if (img_row_fol[c] > 0){ imgLabels_row_fol[c] = iLabel; sop(r + 1, c, iLabel); } else{ imgLabels_row_fol[c] = 0; sop(r + 1, c, 0); } } } else { imgLabels_row[c] = 0; sop(r, c, 0); if (c + 1 < imgLabels.cols) { imgLabels_row[c + 1] = 0; sop(r, c + 1, 0); if (r + 1 < imgLabels.rows) { imgLabels_row_fol[c] = 0; imgLabels_row_fol[c + 1] = 0; sop(r + 1, c, 0); sop(r + 1, c + 1, 0); } } else if (r + 1 < imgLabels.rows) { imgLabels_row_fol[c] = 0; sop(r + 1, c, 0); } } } } }//END Case 1 else{ //Case 2: only rows odd for (int r = 0; r < imgLabels.rows; r += 2) { // Get rows pointer const PixelT * const img_row = img.ptr(r); const PixelT * const img_row_fol = (PixelT *)(((char *)img_row) + img.step.p[0]); LabelT * const imgLabels_row = imgLabels.ptr(r); LabelT * const imgLabels_row_fol = (LabelT *)(((char *)imgLabels_row) + imgLabels.step.p[0]); for (int c = 0; c < imgLabels.cols; c += 2) { LabelT iLabel = imgLabels_row[c]; if (iLabel > 0) { iLabel = P[iLabel]; if (img_row[c] > 0){ imgLabels_row[c] = iLabel; sop(r, c, iLabel); } else{ imgLabels_row[c] = 0; sop(r, c, 0); } if (img_row[c + 1] > 0){ imgLabels_row[c + 1] = iLabel; sop(r, c + 1, iLabel); } else{ imgLabels_row[c + 1] = 0; sop(r, c + 1, 0); } if (r + 1 < imgLabels.rows) { if (img_row_fol[c] > 0){ imgLabels_row_fol[c] = iLabel; sop(r + 1, c, iLabel); } else{ imgLabels_row_fol[c] = 0; sop(r + 1, c, 0); } if (img_row_fol[c + 1] > 0){ imgLabels_row_fol[c + 1] = iLabel; sop(r + 1, c + 1, iLabel); } else{ imgLabels_row_fol[c + 1] = 0; sop(r + 1, c + 1, 0); } } } else { imgLabels_row[c] = 0; imgLabels_row[c + 1] = 0; sop(r, c, 0); sop(r, c + 1, 0); if (r + 1 < imgLabels.rows) { imgLabels_row_fol[c] = 0; imgLabels_row_fol[c + 1] = 0; sop(r + 1, c, 0); sop(r + 1, c + 1, 0); } } } } }// END Case 2 } else{ if (imgLabels.cols & 1){ //Case 3: only cols odd for (int r = 0; r < imgLabels.rows; r += 2) { // Get rows pointer const PixelT * const img_row = img.ptr(r); const PixelT * const img_row_fol = (PixelT *)(((char *)img_row) + img.step.p[0]); LabelT * const imgLabels_row = imgLabels.ptr(r); LabelT * const imgLabels_row_fol = (LabelT *)(((char *)imgLabels_row) + imgLabels.step.p[0]); for (int c = 0; c < imgLabels.cols; c += 2) { LabelT iLabel = imgLabels_row[c]; if (iLabel > 0) { iLabel = P[iLabel]; if (img_row[c] > 0){ imgLabels_row[c] = iLabel; sop(r, c, iLabel); } else{ imgLabels_row[c] = 0; sop(r, c, 0); } if (img_row_fol[c] > 0){ imgLabels_row_fol[c] = iLabel; sop(r + 1, c, iLabel); } else{ imgLabels_row_fol[c] = 0; sop(r + 1, c, 0); } if (c + 1 < imgLabels.cols) { if (img_row[c + 1] > 0){ imgLabels_row[c + 1] = iLabel; sop(r, c + 1, iLabel); } else{ imgLabels_row[c + 1] = 0; sop(r, c + 1, 0); } if (img_row_fol[c + 1] > 0){ imgLabels_row_fol[c + 1] = iLabel; sop(r + 1, c + 1, iLabel); } else{ imgLabels_row_fol[c + 1] = 0; sop(r + 1, c + 1, 0); } } } else{ imgLabels_row[c] = 0; imgLabels_row_fol[c] = 0; sop(r, c, 0); sop(r + 1, c, 0); if (c + 1 < imgLabels.cols) { imgLabels_row[c + 1] = 0; imgLabels_row_fol[c + 1] = 0; sop(r, c + 1, 0); sop(r + 1, c + 1, 0); } } } } }// END case 3 else{ //Case 4: nothing odd for (int r = 0; r < imgLabels.rows; r += 2) { // Get rows pointer const PixelT * const img_row = img.ptr(r); const PixelT * const img_row_fol = (PixelT *)(((char *)img_row) + img.step.p[0]); LabelT * const imgLabels_row = imgLabels.ptr(r); LabelT * const imgLabels_row_fol = (LabelT *)(((char *)imgLabels_row) + imgLabels.step.p[0]); for (int c = 0; c < imgLabels.cols; c += 2) { LabelT iLabel = imgLabels_row[c]; if (iLabel > 0) { iLabel = P[iLabel]; if (img_row[c] > 0){ imgLabels_row[c] = iLabel; sop(r, c, iLabel); } else{ imgLabels_row[c] = 0; sop(r, c, 0); } if (img_row[c + 1] > 0){ imgLabels_row[c + 1] = iLabel; sop(r, c + 1, iLabel); } else{ imgLabels_row[c + 1] = 0; sop(r, c + 1, 0); } if (img_row_fol[c] > 0){ imgLabels_row_fol[c] = iLabel; sop(r + 1, c, iLabel); } else{ imgLabels_row_fol[c] = 0; sop(r + 1, c, 0); } if (img_row_fol[c + 1] > 0){ imgLabels_row_fol[c + 1] = iLabel; sop(r + 1, c + 1, iLabel); } else{ imgLabels_row_fol[c + 1] = 0; sop(r + 1, c + 1, 0); } } else { imgLabels_row[c] = 0; imgLabels_row[c + 1] = 0; imgLabels_row_fol[c] = 0; imgLabels_row_fol[c + 1] = 0; sop(r, c, 0); sop(r, c + 1, 0); sop(r + 1, c, 0); sop(r + 1, c + 1, 0); } } } }//END case 4 } sop.finish(); return nLabels; } //End function LabelingGrana operator() };//End struct LabelingGrana }//end namespace connectedcomponents //L's type must have an appropriate depth for the number of pixels in I template static int connectedComponents_sub1(const cv::Mat& I, cv::Mat& L, int connectivity, int ccltype, StatsOp& sop){ CV_Assert(L.channels() == 1 && I.channels() == 1); CV_Assert(connectivity == 8 || connectivity == 4); CV_Assert(ccltype == CCL_SPAGHETTI || ccltype == CCL_BBDT || ccltype == CCL_SAUF || ccltype == CCL_BOLELLI || ccltype == CCL_GRANA || ccltype == CCL_WU || ccltype == CCL_DEFAULT); int lDepth = L.depth(); int iDepth = I.depth(); const char *currentParallelFramework = cv::currentParallelFramework(); const int nThreads = cv::getNumThreads(); CV_Assert(iDepth == CV_8U || iDepth == CV_8S); //Run parallel labeling only if the rows of the image are at least twice the number of available threads const bool is_parallel = currentParallelFramework != NULL && nThreads > 1 && L.rows / nThreads >= 2; if (ccltype == CCL_SAUF || ccltype == CCL_WU || connectivity == 4){ // SAUF algorithm is used using connectedcomponents::LabelingWu; using connectedcomponents::LabelingWuParallel; //warn if L's depth is not sufficient? if (lDepth == CV_8U){ //Not supported yet } else if (lDepth == CV_16U){ return (int)LabelingWu()(I, L, connectivity, sop); } else if (lDepth == CV_32S){ //note that signed types don't really make sense here and not being able to use unsigned matters for scientific projects //OpenCV: how should we proceed? .at typechecks in debug mode if (!is_parallel) return (int)LabelingWu()(I, L, connectivity, sop); else return (int)LabelingWuParallel()(I, L, connectivity, sop); } } else if ((ccltype == CCL_BBDT || ccltype == CCL_GRANA || ccltype == CCL_DEFAULT) && connectivity == 8){ // BBDT algorithm is used using connectedcomponents::LabelingGrana; using connectedcomponents::LabelingGranaParallel; //warn if L's depth is not sufficient? if (lDepth == CV_8U){ //Not supported yet } else if (lDepth == CV_16U){ return (int)LabelingGrana()(I, L, connectivity, sop); } else if (lDepth == CV_32S){ //note that signed types don't really make sense here and not being able to use unsigned matters for scientific projects //OpenCV: how should we proceed? .at typechecks in debug mode if (!is_parallel) return (int)LabelingGrana()(I, L, connectivity, sop); else return (int)LabelingGranaParallel()(I, L, connectivity, sop); } } else if ((ccltype == CCL_SPAGHETTI || ccltype == CCL_BOLELLI) && connectivity == 8) { // Spaghetti algorithm is used using connectedcomponents::LabelingBolelli; //using connectedcomponents::LabelingBolelliParallel; // Not implemented //warn if L's depth is not sufficient? if (lDepth == CV_8U) { //Not supported yet } else if (lDepth == CV_16U) { return (int)LabelingBolelli()(I, L, connectivity, sop); } else if (lDepth == CV_32S) { //note that signed types don't really make sense here and not being able to use unsigned matters for scientific projects //OpenCV: how should we proceed? .at typechecks in debug mode return (int)LabelingBolelli()(I, L, connectivity, sop); } } CV_Error(CV_StsUnsupportedFormat, "unsupported label/image type"); } } // Simple wrapper to ensure binary and source compatibility (ABI) int cv::connectedComponents(InputArray img_, OutputArray _labels, int connectivity, int ltype){ return cv::connectedComponents(img_, _labels, connectivity, ltype, CCL_DEFAULT); } int cv::connectedComponents(InputArray img_, OutputArray _labels, int connectivity, int ltype, int ccltype){ const cv::Mat img = img_.getMat(); _labels.create(img.size(), CV_MAT_DEPTH(ltype)); cv::Mat labels = _labels.getMat(); connectedcomponents::NoOp sop; if (ltype == CV_16U){ return connectedComponents_sub1(img, labels, connectivity, ccltype, sop); } else if (ltype == CV_32S){ return connectedComponents_sub1(img, labels, connectivity, ccltype, sop); } else{ CV_Error(CV_StsUnsupportedFormat, "the type of labels must be 16u or 32s"); } } // Simple wrapper to ensure binary and source compatibility (ABI) int cv::connectedComponentsWithStats(InputArray img_, OutputArray _labels, OutputArray statsv, OutputArray centroids, int connectivity, int ltype) { return cv::connectedComponentsWithStats(img_, _labels, statsv, centroids, connectivity, ltype, CCL_DEFAULT); } int cv::connectedComponentsWithStats(InputArray img_, OutputArray _labels, OutputArray statsv, OutputArray centroids, int connectivity, int ltype, int ccltype) { const cv::Mat img = img_.getMat(); _labels.create(img.size(), CV_MAT_DEPTH(ltype)); cv::Mat labels = _labels.getMat(); connectedcomponents::CCStatsOp sop(statsv, centroids); if (ltype == CV_16U){ return connectedComponents_sub1(img, labels, connectivity, ccltype, sop); } else if (ltype == CV_32S){ return connectedComponents_sub1(img, labels, connectivity, ccltype, sop); } else{ CV_Error(CV_StsUnsupportedFormat, "the type of labels must be 16u or 32s"); return 0; } }