// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2018-2019, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "test_precomp.hpp" #include "opencv2/core/ocl.hpp" namespace opencv_test { namespace { class DNNTestNetwork : public DNNTestLayer { public: void processNet(const std::string& weights, const std::string& proto, Size inpSize, const std::string& outputLayer = "", const std::string& halideScheduler = "", double l1 = 0.0, double lInf = 0.0) { // Create a common input blob. int blobSize[] = {1, 3, inpSize.height, inpSize.width}; Mat inp(4, blobSize, CV_32FC1); randu(inp, 0.0f, 1.0f); processNet(weights, proto, inp, outputLayer, halideScheduler, l1, lInf); } void processNet(std::string weights, std::string proto, Mat inp, const std::string& outputLayer = "", std::string halideScheduler = "", double l1 = 0.0, double lInf = 0.0, double detectionConfThresh = 0.2) { checkBackend(); l1 = l1 ? l1 : default_l1; lInf = lInf ? lInf : default_lInf; weights = findDataFile(weights, false); if (!proto.empty()) proto = findDataFile(proto); // Create two networks - with default backend and target and a tested one. Net netDefault = readNet(weights, proto); netDefault.setPreferableBackend(DNN_BACKEND_OPENCV); netDefault.setInput(inp); Mat outDefault = netDefault.forward(outputLayer).clone(); net = readNet(weights, proto); net.setInput(inp); net.setPreferableBackend(backend); net.setPreferableTarget(target); if (backend == DNN_BACKEND_HALIDE && !halideScheduler.empty()) { halideScheduler = findDataFile(halideScheduler); net.setHalideScheduler(halideScheduler); } Mat out = net.forward(outputLayer).clone(); check(outDefault, out, outputLayer, l1, lInf, detectionConfThresh, "First run"); // Test 2: change input. float* inpData = (float*)inp.data; for (int i = 0; i < inp.size[0] * inp.size[1]; ++i) { Mat slice(inp.size[2], inp.size[3], CV_32F, inpData); cv::flip(slice, slice, 1); inpData += slice.total(); } netDefault.setInput(inp); net.setInput(inp); outDefault = netDefault.forward(outputLayer).clone(); out = net.forward(outputLayer).clone(); check(outDefault, out, outputLayer, l1, lInf, detectionConfThresh, "Second run"); } void check(Mat& ref, Mat& out, const std::string& outputLayer, double l1, double lInf, double detectionConfThresh, const char* msg) { if (outputLayer == "detection_out") { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { // Inference Engine produces detections terminated by a row which starts from -1. out = out.reshape(1, out.total() / 7); int numDetections = 0; while (numDetections < out.rows && out.at(numDetections, 0) != -1) { numDetections += 1; } out = out.rowRange(0, numDetections); } normAssertDetections(ref, out, msg, detectionConfThresh, l1, lInf); } else normAssert(ref, out, msg, l1, lInf); } Net net; }; TEST_P(DNNTestNetwork, AlexNet) { applyTestTag(CV_TEST_TAG_MEMORY_1GB); if (backend == DNN_BACKEND_HALIDE) // Realization contains wrong number of Images (1) for realizing pipeline with 2 outputs applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt", Size(227, 227), "prob", target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_alexnet.yml" : "dnn/halide_scheduler_alexnet.yml"); expectNoFallbacksFromIE(net); } TEST_P(DNNTestNetwork, ResNet_50) { applyTestTag( (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB), CV_TEST_TAG_DEBUG_LONG ); if (backend == DNN_BACKEND_HALIDE) // Realization contains wrong number of Images (1) for realizing pipeline with 2 outputs applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt", Size(224, 224), "prob", target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_resnet_50.yml" : "dnn/halide_scheduler_resnet_50.yml"); expectNoFallbacksFromIE(net); } TEST_P(DNNTestNetwork, SqueezeNet_v1_1) { if (backend == DNN_BACKEND_HALIDE) // Realization contains wrong number of Images (1) for realizing pipeline with 2 outputs applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt", Size(227, 227), "prob", target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_squeezenet_v1_1.yml" : "dnn/halide_scheduler_squeezenet_v1_1.yml"); expectNoFallbacksFromIE(net); } TEST_P(DNNTestNetwork, GoogLeNet) { applyTestTag(target == DNN_TARGET_CPU ? "" : CV_TEST_TAG_MEMORY_512MB); if (backend == DNN_BACKEND_HALIDE) // Realization contains wrong number of Images (1) for realizing pipeline with 2 outputs applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt", Size(224, 224), "prob"); expectNoFallbacksFromIE(net); } TEST_P(DNNTestNetwork, Inception_5h) { applyTestTag(CV_TEST_TAG_MEMORY_512MB); if (backend == DNN_BACKEND_HALIDE) // Realization contains wrong number of Images (1) for realizing pipeline with 2 outputs applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); double l1 = default_l1, lInf = default_lInf; if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && (target == DNN_TARGET_CPU || target == DNN_TARGET_OPENCL)) { l1 = 1.72e-5; lInf = 8e-4; } processNet("dnn/tensorflow_inception_graph.pb", "", Size(224, 224), "softmax2", target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_inception_5h.yml" : "dnn/halide_scheduler_inception_5h.yml", l1, lInf); expectNoFallbacksFromIE(net); } TEST_P(DNNTestNetwork, ENet) { applyTestTag(target == DNN_TARGET_CPU ? "" : CV_TEST_TAG_MEMORY_512MB); if (backend == DNN_BACKEND_HALIDE) // Realization contains wrong number of Images (1) for realizing pipeline with 2 outputs applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); processNet("dnn/Enet-model-best.net", "", Size(512, 512), "l367_Deconvolution", target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_enet.yml" : "dnn/halide_scheduler_enet.yml", 2e-5, 0.15); } TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe) { applyTestTag(CV_TEST_TAG_MEMORY_512MB); if (backend == DNN_BACKEND_HALIDE) applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); Mat sample = imread(findDataFile("dnn/street.png")); Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); float diffScores = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1.5e-2 : 0.0; float diffSquares = (target == DNN_TARGET_MYRIAD) ? 0.063 : 0.0; float detectionConfThresh = (target == DNN_TARGET_MYRIAD) ? 0.262 : FLT_MIN; processNet("dnn/MobileNetSSD_deploy.caffemodel", "dnn/MobileNetSSD_deploy.prototxt", inp, "detection_out", "", diffScores, diffSquares, detectionConfThresh); expectNoFallbacksFromIE(net); } TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe_Different_Width_Height) { if (backend == DNN_BACKEND_HALIDE) applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); #if defined(INF_ENGINE_RELEASE) if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // IE exception: Ngraph operation Transpose with name conv15_2_mbox_conf_perm has dynamic output shape on 0 port, but CPU plug-in supports only static shape if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); #endif Mat sample = imread(findDataFile("dnn/street.png")); Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 560), Scalar(127.5, 127.5, 127.5), false); float diffScores = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.029 : 0.0; float diffSquares = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.09 : 0.0; processNet("dnn/MobileNetSSD_deploy.caffemodel", "dnn/MobileNetSSD_deploy.prototxt", inp, "detection_out", "", diffScores, diffSquares); expectNoFallbacksFromIE(net); } TEST_P(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow) { applyTestTag(target == DNN_TARGET_CPU ? "" : CV_TEST_TAG_MEMORY_512MB); if (backend == DNN_BACKEND_HALIDE) applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); Mat sample = imread(findDataFile("dnn/street.png")); Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false); float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.095 : 0.0; float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.09 : 0.0; float detectionConfThresh = (target == DNN_TARGET_MYRIAD) ? 0.216 : 0.2; processNet("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", "dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt", inp, "detection_out", "", l1, lInf, detectionConfThresh); expectNoFallbacksFromIE(net); } TEST_P(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow_Different_Width_Height) { if (backend == DNN_BACKEND_HALIDE) applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019020000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif Mat sample = imread(findDataFile("dnn/street.png")); Mat inp = blobFromImage(sample, 1.0f, Size(300, 560), Scalar(), false); float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.013 : 0.0; float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.06 : 0.0; processNet("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", "dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt", inp, "detection_out", "", l1, lInf); expectNoFallbacksFromIE(net); } TEST_P(DNNTestNetwork, MobileNet_SSD_v2_TensorFlow) { applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB); if (backend == DNN_BACKEND_HALIDE) applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); Mat sample = imread(findDataFile("dnn/street.png")); Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false); float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.013 : 2e-5; float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.062 : 0.0; processNet("dnn/ssd_mobilenet_v2_coco_2018_03_29.pb", "dnn/ssd_mobilenet_v2_coco_2018_03_29.pbtxt", inp, "detection_out", "", l1, lInf, 0.25); expectNoFallbacksFromIE(net); } TEST_P(DNNTestNetwork, SSD_VGG16) { applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB), CV_TEST_TAG_DEBUG_VERYLONG); if (backend == DNN_BACKEND_HALIDE && target == DNN_TARGET_CPU) applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); // TODO HALIDE_CPU Mat sample = imread(findDataFile("dnn/street.png")); Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false); float scoreDiff = 0.0, iouDiff = 0.0; if (target == DNN_TARGET_OPENCL_FP16) { scoreDiff = 0.04; } else if (target == DNN_TARGET_MYRIAD) { scoreDiff = 0.0325; iouDiff = 0.032; } processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", "dnn/ssd_vgg16.prototxt", inp, "detection_out", "", scoreDiff, iouDiff); expectNoFallbacksFromIE(net); } TEST_P(DNNTestNetwork, OpenPose_pose_coco) { applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB), CV_TEST_TAG_DEBUG_LONG); if (backend == DNN_BACKEND_HALIDE) applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif const float l1 = (target == DNN_TARGET_MYRIAD) ? 0.009 : 0.0; const float lInf = (target == DNN_TARGET_MYRIAD) ? 0.09 : 0.0; processNet("dnn/openpose_pose_coco.caffemodel", "dnn/openpose_pose_coco.prototxt", Size(46, 46), "", "", l1, lInf); expectNoFallbacksFromIE(net); } TEST_P(DNNTestNetwork, OpenPose_pose_mpi) { applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB), CV_TEST_TAG_DEBUG_VERYLONG); if (backend == DNN_BACKEND_HALIDE) applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif // output range: [-0.001, 0.97] const float l1 = (target == DNN_TARGET_MYRIAD) ? 0.02 : 0.0; const float lInf = (target == DNN_TARGET_MYRIAD || target == DNN_TARGET_OPENCL_FP16) ? 0.2 : 0.0; processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi.prototxt", Size(46, 46), "", "", l1, lInf); expectNoFallbacksFromIE(net); } TEST_P(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages) { applyTestTag(CV_TEST_TAG_LONG, CV_TEST_TAG_MEMORY_1GB); if (backend == DNN_BACKEND_HALIDE) applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif // The same .caffemodel but modified .prototxt // See https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/pose/poseParameters.cpp processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi_faster_4_stages.prototxt", Size(46, 46)); expectNoFallbacksFromIE(net); } TEST_P(DNNTestNetwork, OpenFace) { #if defined(INF_ENGINE_RELEASE) #if INF_ENGINE_VER_MAJOR_EQ(2018050000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif #endif if (backend == DNN_BACKEND_HALIDE) applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); const float l1 = (target == DNN_TARGET_MYRIAD) ? 0.0024 : 0.0; const float lInf = (target == DNN_TARGET_MYRIAD) ? 0.0071 : 0.0; processNet("dnn/openface_nn4.small2.v1.t7", "", Size(96, 96), "", "", l1, lInf); } TEST_P(DNNTestNetwork, opencv_face_detector) { if (backend == DNN_BACKEND_HALIDE) applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); Mat img = imread(findDataFile("gpu/lbpcascade/er.png")); Mat inp = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false); processNet("dnn/opencv_face_detector.caffemodel", "dnn/opencv_face_detector.prototxt", inp, "detection_out"); expectNoFallbacksFromIE(net); } TEST_P(DNNTestNetwork, Inception_v2_SSD_TensorFlow) { applyTestTag( (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB), CV_TEST_TAG_DEBUG_LONG ); #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019020000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif if (backend == DNN_BACKEND_HALIDE) applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); Mat sample = imread(findDataFile("dnn/street.png")); Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false); float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.015 : 0.0; float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.0731 : 0.0; processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "dnn/ssd_inception_v2_coco_2017_11_17.pbtxt", inp, "detection_out", "", l1, lInf); expectNoFallbacksFromIE(net); } TEST_P(DNNTestNetwork, DenseNet_121) { applyTestTag(CV_TEST_TAG_MEMORY_512MB); if (backend == DNN_BACKEND_HALIDE) applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); // Reference output values are in range [-3.807, 4.605] float l1 = 0.0, lInf = 0.0; if (target == DNN_TARGET_OPENCL_FP16) { l1 = 2e-2; lInf = 9e-2; if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) lInf = 0.1f; } else if (target == DNN_TARGET_MYRIAD) { l1 = 0.1; lInf = 0.6; } processNet("dnn/DenseNet_121.caffemodel", "dnn/DenseNet_121.prototxt", Size(224, 224), "", "", l1, lInf); if (target != DNN_TARGET_MYRIAD || getInferenceEngineVPUType() != CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) expectNoFallbacksFromIE(net); } TEST_P(DNNTestNetwork, FastNeuralStyle_eccv16) { applyTestTag(CV_TEST_TAG_MEMORY_512MB, CV_TEST_TAG_DEBUG_VERYLONG); if (backend == DNN_BACKEND_HALIDE) applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #if defined(INF_ENGINE_RELEASE) #if INF_ENGINE_VER_MAJOR_LE(2018050000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif #endif Mat img = imread(findDataFile("dnn/googlenet_1.png")); Mat inp = blobFromImage(img, 1.0, Size(320, 240), Scalar(103.939, 116.779, 123.68), false, false); // Output image has values in range [-143.526, 148.539]. float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.4 : 4e-5; float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 7.45 : 2e-3; processNet("dnn/fast_neural_style_eccv16_starry_night.t7", "", inp, "", "", l1, lInf); #if defined(HAVE_INF_ENGINE) && INF_ENGINE_VER_MAJOR_GE(2019010000) expectNoFallbacksFromIE(net); #endif } INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, dnnBackendsAndTargets(true, true, false)); }} // namespace