/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Peng Xiao, pengxiao@multicorewareinc.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include #include #include "opencv2/core/core.hpp" #include "opencv2/core/utility.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/ocl/ocl.hpp" #include "opencv2/nonfree/ocl.hpp" #include "opencv2/calib3d/calib3d.hpp" #include "opencv2/nonfree/nonfree.hpp" using namespace cv; using namespace cv::ocl; const int LOOP_NUM = 10; const int GOOD_PTS_MAX = 50; const float GOOD_PORTION = 0.15f; namespace { void help(); void help() { std::cout << "\nThis program demonstrates using SURF_OCL features detector and descriptor extractor" << std::endl; std::cout << "\nUsage:\n\tsurf_matcher --left --right [-c]" << std::endl; std::cout << "\nExample:\n\tsurf_matcher --left box.png --right box_in_scene.png" << std::endl; } int64 work_begin = 0; int64 work_end = 0; void workBegin() { work_begin = getTickCount(); } void workEnd() { work_end = getTickCount() - work_begin; } double getTime(){ return work_end /((double)getTickFrequency() * 1000.); } template struct SURFDetector { KPDetector surf; SURFDetector(double hessian = 800.0) :surf(hessian) { } template void operator()(const T& in, const T& mask, std::vector& pts, T& descriptors, bool useProvided = false) { surf(in, mask, pts, descriptors, useProvided); } }; template struct SURFMatcher { KPMatcher matcher; template void match(const T& in1, const T& in2, std::vector& matches) { matcher.match(in1, in2, matches); } }; Mat drawGoodMatches( const Mat& cpu_img1, const Mat& cpu_img2, const std::vector& keypoints1, const std::vector& keypoints2, std::vector& matches, std::vector& scene_corners_ ) { //-- Sort matches and preserve top 10% matches std::sort(matches.begin(), matches.end()); std::vector< DMatch > good_matches; double minDist = matches.front().distance, maxDist = matches.back().distance; const int ptsPairs = std::min(GOOD_PTS_MAX, (int)(matches.size() * GOOD_PORTION)); for( int i = 0; i < ptsPairs; i++ ) { good_matches.push_back( matches[i] ); } std::cout << "\nMax distance: " << maxDist << std::endl; std::cout << "Min distance: " << minDist << std::endl; std::cout << "Calculating homography using " << ptsPairs << " point pairs." << std::endl; // drawing the results Mat img_matches; drawMatches( cpu_img1, keypoints1, cpu_img2, keypoints2, good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), std::vector(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); //-- Localize the object std::vector obj; std::vector scene; for( size_t i = 0; i < good_matches.size(); i++ ) { //-- Get the keypoints from the good matches obj.push_back( keypoints1[ good_matches[i].queryIdx ].pt ); scene.push_back( keypoints2[ good_matches[i].trainIdx ].pt ); } //-- Get the corners from the image_1 ( the object to be "detected" ) std::vector obj_corners(4); obj_corners[0] = Point(0,0); obj_corners[1] = Point( cpu_img1.cols, 0 ); obj_corners[2] = Point( cpu_img1.cols, cpu_img1.rows ); obj_corners[3] = Point( 0, cpu_img1.rows ); std::vector scene_corners(4); Mat H = findHomography( obj, scene, RANSAC ); perspectiveTransform( obj_corners, scene_corners, H); scene_corners_ = scene_corners; //-- Draw lines between the corners (the mapped object in the scene - image_2 ) line( img_matches, scene_corners[0] + Point2f( (float)cpu_img1.cols, 0), scene_corners[1] + Point2f( (float)cpu_img1.cols, 0), Scalar( 0, 255, 0), 2, LINE_AA ); line( img_matches, scene_corners[1] + Point2f( (float)cpu_img1.cols, 0), scene_corners[2] + Point2f( (float)cpu_img1.cols, 0), Scalar( 0, 255, 0), 2, LINE_AA ); line( img_matches, scene_corners[2] + Point2f( (float)cpu_img1.cols, 0), scene_corners[3] + Point2f( (float)cpu_img1.cols, 0), Scalar( 0, 255, 0), 2, LINE_AA ); line( img_matches, scene_corners[3] + Point2f( (float)cpu_img1.cols, 0), scene_corners[0] + Point2f( (float)cpu_img1.cols, 0), Scalar( 0, 255, 0), 2, LINE_AA ); return img_matches; } } //////////////////////////////////////////////////// // This program demonstrates the usage of SURF_OCL. // use cpu findHomography interface to calculate the transformation matrix int main(int argc, char* argv[]) { std::vector info; if(cv::ocl::getDevice(info) == 0) { std::cout << "Error: Did not find a valid OpenCL device!" << std::endl; return -1; } ocl::setDevice(info[0]); Mat cpu_img1, cpu_img2, cpu_img1_grey, cpu_img2_grey; oclMat img1, img2; bool useCPU = false; bool useGPU = false; bool useALL = false; for (int i = 1; i < argc; ++i) { if (String(argv[i]) == "--left") { cpu_img1 = imread(argv[++i]); CV_Assert(!cpu_img1.empty()); cvtColor(cpu_img1, cpu_img1_grey, COLOR_BGR2GRAY); img1 = cpu_img1_grey; } else if (String(argv[i]) == "--right") { cpu_img2 = imread(argv[++i]); CV_Assert(!cpu_img2.empty()); cvtColor(cpu_img2, cpu_img2_grey, COLOR_BGR2GRAY); img2 = cpu_img2_grey; } else if (String(argv[i]) == "-c") { useCPU = true; useGPU = false; useALL = false; }else if(String(argv[i]) == "-g") { useGPU = true; useCPU = false; useALL = false; }else if(String(argv[i]) == "-a") { useALL = true; useCPU = false; useGPU = false; } else if (String(argv[i]) == "--help") { help(); return -1; } } if(!useCPU) { std::cout << "Device name:" << info[0].DeviceName[0] << std::endl; } double surf_time = 0.; //declare input/output std::vector keypoints1, keypoints2; std::vector matches; std::vector gpu_keypoints1; std::vector gpu_keypoints2; std::vector gpu_matches; Mat descriptors1CPU, descriptors2CPU; oclMat keypoints1GPU, keypoints2GPU; oclMat descriptors1GPU, descriptors2GPU; //instantiate detectors/matchers SURFDetector cpp_surf; SURFDetector ocl_surf; SURFMatcher cpp_matcher; SURFMatcher ocl_matcher; //-- start of timing section if (useCPU) { for (int i = 0; i <= LOOP_NUM; i++) { if(i == 1) workBegin(); cpp_surf(cpu_img1_grey, Mat(), keypoints1, descriptors1CPU); cpp_surf(cpu_img2_grey, Mat(), keypoints2, descriptors2CPU); cpp_matcher.match(descriptors1CPU, descriptors2CPU, matches); } workEnd(); std::cout << "CPP: FOUND " << keypoints1.size() << " keypoints on first image" << std::endl; std::cout << "CPP: FOUND " << keypoints2.size() << " keypoints on second image" << std::endl; surf_time = getTime(); std::cout << "SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl<<"\n"; } else if(useGPU) { for (int i = 0; i <= LOOP_NUM; i++) { if(i == 1) workBegin(); ocl_surf(img1, oclMat(), keypoints1, descriptors1GPU); ocl_surf(img2, oclMat(), keypoints2, descriptors2GPU); ocl_matcher.match(descriptors1GPU, descriptors2GPU, matches); } workEnd(); std::cout << "OCL: FOUND " << keypoints1.size() << " keypoints on first image" << std::endl; std::cout << "OCL: FOUND " << keypoints2.size() << " keypoints on second image" << std::endl; surf_time = getTime(); std::cout << "SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl<<"\n"; }else { //cpu runs for (int i = 0; i <= LOOP_NUM; i++) { if(i == 1) workBegin(); cpp_surf(cpu_img1_grey, Mat(), keypoints1, descriptors1CPU); cpp_surf(cpu_img2_grey, Mat(), keypoints2, descriptors2CPU); cpp_matcher.match(descriptors1CPU, descriptors2CPU, matches); } workEnd(); std::cout << "\nCPP: FOUND " << keypoints1.size() << " keypoints on first image" << std::endl; std::cout << "CPP: FOUND " << keypoints2.size() << " keypoints on second image" << std::endl; surf_time = getTime(); std::cout << "(CPP)SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl; //gpu runs for (int i = 0; i <= LOOP_NUM; i++) { if(i == 1) workBegin(); ocl_surf(img1, oclMat(), gpu_keypoints1, descriptors1GPU); ocl_surf(img2, oclMat(), gpu_keypoints2, descriptors2GPU); ocl_matcher.match(descriptors1GPU, descriptors2GPU, gpu_matches); } workEnd(); std::cout << "\nOCL: FOUND " << keypoints1.size() << " keypoints on first image" << std::endl; std::cout << "OCL: FOUND " << keypoints2.size() << " keypoints on second image" << std::endl; surf_time = getTime(); std::cout << "(OCL)SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl<<"\n"; } //-------------------------------------------------------------------------- std::vector cpu_corner; Mat img_matches = drawGoodMatches(cpu_img1, cpu_img2, keypoints1, keypoints2, matches, cpu_corner); std::vector gpu_corner; Mat ocl_img_matches; if(useALL || (!useCPU&&!useGPU)) { ocl_img_matches = drawGoodMatches(cpu_img1, cpu_img2, gpu_keypoints1, gpu_keypoints2, gpu_matches, gpu_corner); //check accuracy std::cout<<"\nCheck accuracy:\n"; if(cpu_corner.size()!=gpu_corner.size()) std::cout<<"Failed\n"; else { bool result = false; for(size_t i = 0; i < cpu_corner.size(); i++) { if((std::abs(cpu_corner[i].x - gpu_corner[i].x) > 10) ||(std::abs(cpu_corner[i].y - gpu_corner[i].y) > 10)) { std::cout<<"Failed\n"; result = false; break; } result = true; } if(result) std::cout<<"Passed\n"; } } //-- Show detected matches if (useCPU) { namedWindow("cpu surf matches", 0); imshow("cpu surf matches", img_matches); } else if(useGPU) { namedWindow("ocl surf matches", 0); imshow("ocl surf matches", img_matches); }else { namedWindow("cpu surf matches", 0); imshow("cpu surf matches", img_matches); namedWindow("ocl surf matches", 0); imshow("ocl surf matches", ocl_img_matches); } waitKey(0); return 0; }