/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include #include "internal_shared.hpp" #include "opencv2/gpu/device/common.hpp" #include "opencv2/gpu/device/border_interpolate.hpp" #define tx threadIdx.x #define ty threadIdx.y #define bx blockIdx.x #define by blockIdx.y #define bdx blockDim.x #define bdy blockDim.y #define BORDER_SIZE 5 #define MAX_KSIZE_HALF 100 using namespace std; namespace cv { namespace gpu { namespace device { namespace optflow_farneback { __constant__ float c_g[8]; __constant__ float c_xg[8]; __constant__ float c_xxg[8]; __constant__ float c_ig11, c_ig03, c_ig33, c_ig55; template __global__ void polynomialExpansion( const int height, const int width, const PtrStepf src, PtrStepf dst) { const int y = by * bdy + ty; const int x = bx * (bdx - 2*polyN) + tx - polyN; if (y < height) { extern __shared__ float smem[]; volatile float *row = smem + tx; int xWarped = ::min(::max(x, 0), width - 1); row[0] = src(y, xWarped) * c_g[0]; row[bdx] = 0.f; row[2*bdx] = 0.f; for (int k = 1; k <= polyN; ++k) { float t0 = src(::max(y - k, 0), xWarped); float t1 = src(::min(y + k, height - 1), xWarped); row[0] += c_g[k] * (t0 + t1); row[bdx] += c_xg[k] * (t1 - t0); row[2*bdx] += c_xxg[k] * (t0 + t1); } __syncthreads(); if (tx >= polyN && tx + polyN < bdx && x < width) { float b1 = c_g[0] * row[0]; float b3 = c_g[0] * row[bdx]; float b5 = c_g[0] * row[2*bdx]; float b2 = 0, b4 = 0, b6 = 0; for (int k = 1; k <= polyN; ++k) { b1 += (row[k] + row[-k]) * c_g[k]; b4 += (row[k] + row[-k]) * c_xxg[k]; b2 += (row[k] - row[-k]) * c_xg[k]; b3 += (row[k + bdx] + row[-k + bdx]) * c_g[k]; b6 += (row[k + bdx] - row[-k + bdx]) * c_xg[k]; b5 += (row[k + 2*bdx] + row[-k + 2*bdx]) * c_g[k]; } dst(y, xWarped) = b3*c_ig11; dst(height + y, xWarped) = b2*c_ig11; dst(2*height + y, xWarped) = b1*c_ig03 + b5*c_ig33; dst(3*height + y, xWarped) = b1*c_ig03 + b4*c_ig33; dst(4*height + y, xWarped) = b6*c_ig55; } } } void setPolynomialExpansionConsts( int polyN, const float *g, const float *xg, const float *xxg, float ig11, float ig03, float ig33, float ig55) { cudaSafeCall(cudaMemcpyToSymbol(c_g, g, (polyN + 1) * sizeof(*g))); cudaSafeCall(cudaMemcpyToSymbol(c_xg, xg, (polyN + 1) * sizeof(*xg))); cudaSafeCall(cudaMemcpyToSymbol(c_xxg, xxg, (polyN + 1) * sizeof(*xxg))); cudaSafeCall(cudaMemcpyToSymbol(c_ig11, &ig11, sizeof(ig11))); cudaSafeCall(cudaMemcpyToSymbol(c_ig03, &ig03, sizeof(ig03))); cudaSafeCall(cudaMemcpyToSymbol(c_ig33, &ig33, sizeof(ig33))); cudaSafeCall(cudaMemcpyToSymbol(c_ig55, &ig55, sizeof(ig55))); } void polynomialExpansionGpu(const DevMem2Df &src, int polyN, DevMem2Df dst, cudaStream_t stream) { dim3 block(256); dim3 grid(divUp(src.cols, block.x - 2*polyN), src.rows); int smem = 3 * block.x * sizeof(float); if (polyN == 5) polynomialExpansion<5><<>>(src.rows, src.cols, src, dst); else if (polyN == 7) polynomialExpansion<7><<>>(src.rows, src.cols, src, dst); cudaSafeCall(cudaGetLastError()); if (stream == 0) cudaSafeCall(cudaDeviceSynchronize()); } __constant__ float c_border[BORDER_SIZE + 1]; __global__ void updateMatrices( const int height, const int width, const PtrStepf flowx, const PtrStepf flowy, const PtrStepf R0, const PtrStepf R1, PtrStepf M) { const int y = by * bdy + ty; const int x = bx * bdx + tx; if (y < height && x < width) { float dx = flowx(y, x); float dy = flowy(y, x); float fx = x + dx; float fy = y + dy; int x1 = floorf(fx); int y1 = floorf(fy); fx -= x1; fy -= y1; float r2, r3, r4, r5, r6; if (x1 >= 0 && y1 >= 0 && x1 < width - 1 && y1 < height - 1) { float a00 = (1.f - fx) * (1.f - fy); float a01 = fx * (1.f - fy); float a10 = (1.f - fx) * fy; float a11 = fx * fy; r2 = a00 * R1(y1, x1) + a01 * R1(y1, x1 + 1) + a10 * R1(y1 + 1, x1) + a11 * R1(y1 + 1, x1 + 1); r3 = a00 * R1(height + y1, x1) + a01 * R1(height + y1, x1 + 1) + a10 * R1(height + y1 + 1, x1) + a11 * R1(height + y1 + 1, x1 + 1); r4 = a00 * R1(2*height + y1, x1) + a01 * R1(2*height + y1, x1 + 1) + a10 * R1(2*height + y1 + 1, x1) + a11 * R1(2*height + y1 + 1, x1 + 1); r5 = a00 * R1(3*height + y1, x1) + a01 * R1(3*height + y1, x1 + 1) + a10 * R1(3*height + y1 + 1, x1) + a11 * R1(3*height + y1 + 1, x1 + 1); r6 = a00 * R1(4*height + y1, x1) + a01 * R1(4*height + y1, x1 + 1) + a10 * R1(4*height + y1 + 1, x1) + a11 * R1(4*height + y1 + 1, x1 + 1); r4 = (R0(2*height + y, x) + r4) * 0.5f; r5 = (R0(3*height + y, x) + r5) * 0.5f; r6 = (R0(4*height + y, x) + r6) * 0.25f; } else { r2 = r3 = 0.f; r4 = R0(2*height + y, x); r5 = R0(3*height + y, x); r6 = R0(4*height + y, x) * 0.5f; } r2 = (R0(y, x) - r2) * 0.5f; r3 = (R0(height + y, x) - r3) * 0.5f; r2 += r4*dy + r6*dx; r3 += r6*dy + r5*dx; float scale = c_border[::min(x, BORDER_SIZE)] * c_border[::min(y, BORDER_SIZE)] * c_border[::min(width - x - 1, BORDER_SIZE)] * c_border[::min(height - y - 1, BORDER_SIZE)]; r2 *= scale; r3 *= scale; r4 *= scale; r5 *= scale; r6 *= scale; M(y, x) = r4*r4 + r6*r6; M(height + y, x) = (r4 + r5)*r6; M(2*height + y, x) = r5*r5 + r6*r6; M(3*height + y, x) = r4*r2 + r6*r3; M(4*height + y, x) = r6*r2 + r5*r3; } } void setUpdateMatricesConsts() { static const float border[BORDER_SIZE + 1] = {0.14f, 0.14f, 0.4472f, 0.4472f, 0.4472f, 1.f}; cudaSafeCall(cudaMemcpyToSymbol(c_border, border, (BORDER_SIZE + 1) * sizeof(*border))); } void updateMatricesGpu( const DevMem2Df flowx, const DevMem2Df flowy, const DevMem2Df R0, const DevMem2Df R1, DevMem2Df M, cudaStream_t stream) { dim3 block(32, 8); dim3 grid(divUp(flowx.cols, block.x), divUp(flowx.rows, block.y)); updateMatrices<<>>(flowx.rows, flowx.cols, flowx, flowy, R0, R1, M); cudaSafeCall(cudaGetLastError()); if (stream == 0) cudaSafeCall(cudaDeviceSynchronize()); } __global__ void updateFlow( const int height, const int width, const PtrStepf M, PtrStepf flowx, PtrStepf flowy) { const int y = by * bdy + ty; const int x = bx * bdx + tx; if (y < height && x < width) { float g11 = M(y, x); float g12 = M(height + y, x); float g22 = M(2*height + y, x); float h1 = M(3*height + y, x); float h2 = M(4*height + y, x); float detInv = 1.f / (g11*g22 - g12*g12 + 1e-3f); flowx(y, x) = (g11*h2 - g12*h1) * detInv; flowy(y, x) = (g22*h1 - g12*h2) * detInv; } } void updateFlowGpu(const DevMem2Df M, DevMem2Df flowx, DevMem2Df flowy, cudaStream_t stream) { dim3 block(32, 8); dim3 grid(divUp(flowx.cols, block.x), divUp(flowx.rows, block.y)); updateFlow<<>>(flowx.rows, flowx.cols, M, flowx, flowy); cudaSafeCall(cudaGetLastError()); if (stream == 0) cudaSafeCall(cudaDeviceSynchronize()); } /*__global__ void boxFilter( const int height, const int width, const PtrStepf src, const int ksizeHalf, const float boxAreaInv, PtrStepf dst) { const int y = by * bdy + ty; const int x = bx * bdx + tx; extern __shared__ float smem[]; volatile float *row = smem + ty * (bdx + 2*ksizeHalf); if (y < height) { // Vertical pass for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx) { int xExt = int(bx * bdx) + i - ksizeHalf; xExt = ::min(::max(xExt, 0), width - 1); row[i] = src(y, xExt); for (int j = 1; j <= ksizeHalf; ++j) row[i] += src(::max(y - j, 0), xExt) + src(::min(y + j, height - 1), xExt); } if (x < width) { __syncthreads(); // Horizontal passs row += tx + ksizeHalf; float res = row[0]; for (int i = 1; i <= ksizeHalf; ++i) res += row[-i] + row[i]; dst(y, x) = res * boxAreaInv; } } } void boxFilterGpu(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream) { dim3 block(256); dim3 grid(divUp(src.cols, block.x), divUp(src.rows, block.y)); int smem = (block.x + 2*ksizeHalf) * block.y * sizeof(float); float boxAreaInv = 1.f / ((1 + 2*ksizeHalf) * (1 + 2*ksizeHalf)); boxFilter<<>>(src.rows, src.cols, src, ksizeHalf, boxAreaInv, dst); cudaSafeCall(cudaGetLastError()); if (stream == 0) cudaSafeCall(cudaDeviceSynchronize()); }*/ __global__ void boxFilter5( const int height, const int width, const PtrStepf src, const int ksizeHalf, const float boxAreaInv, PtrStepf dst) { const int y = by * bdy + ty; const int x = bx * bdx + tx; extern __shared__ float smem[]; const int smw = bdx + 2*ksizeHalf; // shared memory "width" volatile float *row = smem + 5 * ty * smw; if (y < height) { // Vertical pass for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx) { int xExt = int(bx * bdx) + i - ksizeHalf; xExt = ::min(::max(xExt, 0), width - 1); #pragma unroll for (int k = 0; k < 5; ++k) row[k*smw + i] = src(k*height + y, xExt); for (int j = 1; j <= ksizeHalf; ++j) #pragma unroll for (int k = 0; k < 5; ++k) row[k*smw + i] += src(k*height + ::max(y - j, 0), xExt) + src(k*height + ::min(y + j, height - 1), xExt); } if (x < width) { __syncthreads(); // Horizontal passs row += tx + ksizeHalf; float res[5]; #pragma unroll for (int k = 0; k < 5; ++k) res[k] = row[k*smw]; for (int i = 1; i <= ksizeHalf; ++i) #pragma unroll for (int k = 0; k < 5; ++k) res[k] += row[k*smw - i] + row[k*smw + i]; #pragma unroll for (int k = 0; k < 5; ++k) dst(k*height + y, x) = res[k] * boxAreaInv; } } } void boxFilter5Gpu(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream) { int height = src.rows / 5; int width = src.cols; dim3 block(256); dim3 grid(divUp(width, block.x), divUp(height, block.y)); int smem = (block.x + 2*ksizeHalf) * 5 * block.y * sizeof(float); float boxAreaInv = 1.f / ((1 + 2*ksizeHalf) * (1 + 2*ksizeHalf)); boxFilter5<<>>(height, width, src, ksizeHalf, boxAreaInv, dst); cudaSafeCall(cudaGetLastError()); if (stream == 0) cudaSafeCall(cudaDeviceSynchronize()); } void boxFilter5Gpu_CC11(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream) { int height = src.rows / 5; int width = src.cols; dim3 block(128); dim3 grid(divUp(width, block.x), divUp(height, block.y)); int smem = (block.x + 2*ksizeHalf) * 5 * block.y * sizeof(float); float boxAreaInv = 1.f / ((1 + 2*ksizeHalf) * (1 + 2*ksizeHalf)); boxFilter5<<>>(height, width, src, ksizeHalf, boxAreaInv, dst); cudaSafeCall(cudaGetLastError()); if (stream == 0) cudaSafeCall(cudaDeviceSynchronize()); } __constant__ float c_gKer[MAX_KSIZE_HALF + 1]; template __global__ void gaussianBlur( const int height, const int width, const PtrStepf src, const int ksizeHalf, const Border b, PtrStepf dst) { const int y = by * bdy + ty; const int x = bx * bdx + tx; extern __shared__ float smem[]; volatile float *row = smem + ty * (bdx + 2*ksizeHalf); if (y < height) { // Vertical pass for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx) { int xExt = int(bx * bdx) + i - ksizeHalf; xExt = b.idx_col(xExt); row[i] = src(y, xExt) * c_gKer[0]; for (int j = 1; j <= ksizeHalf; ++j) row[i] += (src(b.idx_row_low(y - j), xExt) + src(b.idx_row_high(y + j), xExt)) * c_gKer[j]; } if (x < width) { __syncthreads(); // Horizontal pass row += tx + ksizeHalf; float res = row[0] * c_gKer[0]; for (int i = 1; i <= ksizeHalf; ++i) res += (row[-i] + row[i]) * c_gKer[i]; dst(y, x) = res; } } } void setGaussianBlurKernel(const float *gKer, int ksizeHalf) { cudaSafeCall(cudaMemcpyToSymbol(c_gKer, gKer, (ksizeHalf + 1) * sizeof(*gKer))); } template void gaussianBlurCaller(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream) { int height = src.rows; int width = src.cols; dim3 block(256); dim3 grid(divUp(width, block.x), divUp(height, block.y)); int smem = (block.x + 2*ksizeHalf) * block.y * sizeof(float); Border b(height, width); gaussianBlur<<>>(height, width, src, ksizeHalf, b, dst); cudaSafeCall(cudaGetLastError()); if (stream == 0) cudaSafeCall(cudaDeviceSynchronize()); } void gaussianBlurGpu( const DevMem2Df src, int ksizeHalf, DevMem2Df dst, int borderMode, cudaStream_t stream) { typedef void (*caller_t)(const DevMem2Df, int, DevMem2Df, cudaStream_t); static const caller_t callers[] = { gaussianBlurCaller >, gaussianBlurCaller >, }; callers[borderMode](src, ksizeHalf, dst, stream); } template __global__ void gaussianBlur5( const int height, const int width, const PtrStepf src, const int ksizeHalf, const Border b, PtrStepf dst) { const int y = by * bdy + ty; const int x = bx * bdx + tx; extern __shared__ float smem[]; const int smw = bdx + 2*ksizeHalf; // shared memory "width" volatile float *row = smem + 5 * ty * smw; if (y < height) { // Vertical pass for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx) { int xExt = int(bx * bdx) + i - ksizeHalf; xExt = b.idx_col(xExt); #pragma unroll for (int k = 0; k < 5; ++k) row[k*smw + i] = src(k*height + y, xExt) * c_gKer[0]; for (int j = 1; j <= ksizeHalf; ++j) #pragma unroll for (int k = 0; k < 5; ++k) row[k*smw + i] += (src(k*height + b.idx_row_low(y - j), xExt) + src(k*height + b.idx_row_high(y + j), xExt)) * c_gKer[j]; } if (x < width) { __syncthreads(); // Horizontal pass row += tx + ksizeHalf; float res[5]; #pragma unroll for (int k = 0; k < 5; ++k) res[k] = row[k*smw] * c_gKer[0]; for (int i = 1; i <= ksizeHalf; ++i) #pragma unroll for (int k = 0; k < 5; ++k) res[k] += (row[k*smw - i] + row[k*smw + i]) * c_gKer[i]; #pragma unroll for (int k = 0; k < 5; ++k) dst(k*height + y, x) = res[k]; } } } template void gaussianBlur5Caller( const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream) { int height = src.rows / 5; int width = src.cols; dim3 block(blockDimX); dim3 grid(divUp(width, block.x), divUp(height, block.y)); int smem = (block.x + 2*ksizeHalf) * 5 * block.y * sizeof(float); Border b(height, width); gaussianBlur5<<>>(height, width, src, ksizeHalf, b, dst); cudaSafeCall(cudaGetLastError()); if (stream == 0) cudaSafeCall(cudaDeviceSynchronize()); } void gaussianBlur5Gpu( const DevMem2Df src, int ksizeHalf, DevMem2Df dst, int borderMode, cudaStream_t stream) { typedef void (*caller_t)(const DevMem2Df, int, DevMem2Df, cudaStream_t); static const caller_t callers[] = { gaussianBlur5Caller,256>, gaussianBlur5Caller,256>, }; callers[borderMode](src, ksizeHalf, dst, stream); } void gaussianBlur5Gpu_CC11( const DevMem2Df src, int ksizeHalf, DevMem2Df dst, int borderMode, cudaStream_t stream) { typedef void (*caller_t)(const DevMem2Df, int, DevMem2Df, cudaStream_t); static const caller_t callers[] = { gaussianBlur5Caller,128>, gaussianBlur5Caller,128>, }; callers[borderMode](src, ksizeHalf, dst, stream); } }}}} // namespace cv { namespace gpu { namespace device { namespace optflow_farneback