/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Niko Li, newlife20080214@gmail.com // Jia Haipeng, jiahaipeng95@gmail.com // Shengen Yan, yanshengen@gmail.com // Jiang Liyuan,jlyuan001.good@163.com // Rock Li, Rock.Li@amd.com // Zailong Wu, bullet@yeah.net // Yao Wang, bitwangyaoyao@gmail.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ //#define PRINT_CPU_TIME 1000 //#define PRINT_TIME #include "precomp.hpp" #include #ifdef HAVE_OPENCL using namespace cv; using namespace cv::ocl; using namespace cvtest; using namespace testing; using namespace std; PARAM_TEST_CASE(ArithmTestBase, MatType, bool) { int type; cv::Scalar val; //src mat cv::Mat mat1; cv::Mat mat2; cv::Mat mask; cv::Mat dst; cv::Mat dst1; //bak, for two outputs // set up roi int roicols; int roirows; int src1x; int src1y; int src2x; int src2y; int dstx; int dsty; int maskx; int masky; //src mat with roi cv::Mat mat1_roi; cv::Mat mat2_roi; cv::Mat mask_roi; cv::Mat dst_roi; cv::Mat dst1_roi; //bak //ocl dst mat for testing cv::ocl::oclMat gdst_whole; cv::ocl::oclMat gdst1_whole; //bak //ocl mat with roi cv::ocl::oclMat gmat1; cv::ocl::oclMat gmat2; cv::ocl::oclMat gdst; cv::ocl::oclMat gdst1; //bak cv::ocl::oclMat gmask; virtual void SetUp() { type = GET_PARAM(0); cv::RNG &rng = TS::ptr()->get_rng(); cv::Size size(MWIDTH, MHEIGHT); mat1 = randomMat(rng, size, type, 5, 16, false); //mat2 = randomMat(rng, size, type, 5, 16, false); mat2 = randomMat(rng, size, type, 5, 16, false); dst = randomMat(rng, size, type, 5, 16, false); dst1 = randomMat(rng, size, type, 5, 16, false); mask = randomMat(rng, size, CV_8UC1, 0, 2, false); cv::threshold(mask, mask, 0.5, 255., CV_8UC1); val = cv::Scalar(rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0)); } void random_roi() { #ifdef RANDOMROI //randomize ROI cv::RNG &rng = TS::ptr()->get_rng(); roicols = rng.uniform(1, mat1.cols); roirows = rng.uniform(1, mat1.rows); src1x = rng.uniform(0, mat1.cols - roicols); src1y = rng.uniform(0, mat1.rows - roirows); dstx = rng.uniform(0, dst.cols - roicols); dsty = rng.uniform(0, dst.rows - roirows); maskx = rng.uniform(0, mask.cols - roicols); masky = rng.uniform(0, mask.rows - roirows); src2x = rng.uniform(0, mat2.cols - roicols); src2y = rng.uniform(0, mat2.rows - roirows); #else roicols = mat1.cols; roirows = mat1.rows; src1x = 0; src1y = 0; dstx = 0; dsty = 0; maskx = 0; masky = 0; src2x = 0; src2y = 0; #endif mat1_roi = mat1(Rect(src1x, src1y, roicols, roirows)); mat2_roi = mat2(Rect(src2x, src2y, roicols, roirows)); mask_roi = mask(Rect(maskx, masky, roicols, roirows)); dst_roi = dst(Rect(dstx, dsty, roicols, roirows)); dst1_roi = dst1(Rect(dstx, dsty, roicols, roirows)); gdst_whole = dst; gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows)); gdst1_whole = dst1; gdst1 = gdst1_whole(Rect(dstx, dsty, roicols, roirows)); gmat1 = mat1_roi; gmat2 = mat2_roi; gmask = mask_roi; //end } void Near(double threshold = 0.) { EXPECT_MAT_NEAR(dst, Mat(gdst_whole), threshold); } void Near1(double threshold = 0.) { EXPECT_MAT_NEAR(dst1, Mat(gdst1_whole), threshold); } }; ////////////////////////////////lut///////////////////////////////////////////////// struct Lut : ArithmTestBase {}; #define VARNAME(A) string(#A); TEST_P(Lut, Mat) { cv::Mat mat2(3, 512, CV_8UC1); cv::RNG &rng = TS::ptr()->get_rng(); rng.fill(mat2, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(256)); for(int j = 0; j < LOOP_TIMES; j ++) { random_roi(); src2x = rng.uniform( 0, mat2.cols - 256); src2y = rng.uniform (0, mat2.rows - 1); cv::Mat mat2_roi = mat2(Rect(src2x, src2y, 256, 1)); cv::ocl::oclMat gmat2(mat2_roi); cv::LUT(mat1_roi, mat2_roi, dst_roi); cv::ocl::LUT(gmat1, gmat2, gdst); Near(0); } } ////////////////////////////////exp///////////////////////////////////////////////// struct Exp : ArithmTestBase {}; TEST_P(Exp, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::exp(mat1_roi, dst_roi); cv::ocl::exp(gmat1, gdst); Near(2); } } ////////////////////////////////log///////////////////////////////////////////////// struct Log : ArithmTestBase {}; TEST_P(Log, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::log(mat1_roi, dst_roi); cv::ocl::log(gmat1, gdst); Near(1); } } ////////////////////////////////add///////////////////////////////////////////////// struct Add : ArithmTestBase {}; TEST_P(Add, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::add(mat1_roi, mat2_roi, dst_roi); cv::ocl::add(gmat1, gmat2, gdst); Near(0); } } TEST_P(Add, Mat_Mask) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::add(mat1_roi, mat2_roi, dst_roi, mask_roi); cv::ocl::add(gmat1, gmat2, gdst, gmask); Near(0); } } TEST_P(Add, Scalar) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::add(mat1_roi, val, dst_roi); cv::ocl::add(gmat1, val, gdst); Near(1e-5); } } TEST_P(Add, Scalar_Mask) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::add(mat1_roi, val, dst_roi, mask_roi); cv::ocl::add(gmat1, val, gdst, gmask); Near(1e-5); } } ////////////////////////////////sub///////////////////////////////////////////////// struct Sub : ArithmTestBase {}; TEST_P(Sub, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::subtract(mat1_roi, mat2_roi, dst_roi); cv::ocl::subtract(gmat1, gmat2, gdst); Near(0); } } TEST_P(Sub, Mat_Mask) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::subtract(mat1_roi, mat2_roi, dst_roi, mask_roi); cv::ocl::subtract(gmat1, gmat2, gdst, gmask); Near(0); } } TEST_P(Sub, Scalar) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::subtract(mat1_roi, val, dst_roi); cv::ocl::subtract(gmat1, val, gdst); Near(1e-5); } } TEST_P(Sub, Scalar_Mask) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::subtract(mat1_roi, val, dst_roi, mask_roi); cv::ocl::subtract(gmat1, val, gdst, gmask); Near(1e-5); } } ////////////////////////////////Mul///////////////////////////////////////////////// struct Mul : ArithmTestBase {}; TEST_P(Mul, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::multiply(mat1_roi, mat2_roi, dst_roi); cv::ocl::multiply(gmat1, gmat2, gdst); Near(0); } } TEST_P(Mul, Mat_Scalar) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::RNG &rng = TS::ptr()->get_rng(); double s = rng.uniform(-10.0, 10.0); cv::multiply(mat1_roi, mat2_roi, dst_roi, s); cv::ocl::multiply(gmat1, gmat2, gdst, s); Near(.001); } } struct Div : ArithmTestBase {}; TEST_P(Div, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::divide(mat1_roi, mat2_roi, dst_roi); cv::ocl::divide(gmat1, gmat2, gdst); Near(1); } } TEST_P(Div, Mat_Scalar) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::RNG &rng = TS::ptr()->get_rng(); double s = rng.uniform(-10.0, 10.0); cv::divide(mat1_roi, mat2_roi, dst_roi, s); cv::ocl::divide(gmat1, gmat2, gdst, s); Near(.001); } } struct Absdiff : ArithmTestBase {}; TEST_P(Absdiff, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::absdiff(mat1_roi, mat2_roi, dst_roi); cv::ocl::absdiff(gmat1, gmat2, gdst); Near(0); } } TEST_P(Absdiff, Mat_Scalar) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::absdiff(mat1_roi, val, dst_roi); cv::ocl::absdiff(gmat1, val, gdst); Near(1e-5); } } struct CartToPolar : ArithmTestBase {}; TEST_P(CartToPolar, angleInDegree) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::cartToPolar(mat1_roi, mat2_roi, dst_roi, dst1_roi, 1); cv::ocl::cartToPolar(gmat1, gmat2, gdst, gdst1, 1); Near(.5); Near1(.5); } } TEST_P(CartToPolar, angleInRadians) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::cartToPolar(mat1_roi, mat2_roi, dst_roi, dst1_roi, 0); cv::ocl::cartToPolar(gmat1, gmat2, gdst, gdst1, 0); Near(.5); Near1(.5); } } struct PolarToCart : ArithmTestBase {}; TEST_P(PolarToCart, angleInDegree) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::polarToCart(mat1_roi, mat2_roi, dst_roi, dst1_roi, 1); cv::ocl::polarToCart(gmat1, gmat2, gdst, gdst1, 1); Near(.5); Near1(.5); } } TEST_P(PolarToCart, angleInRadians) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::polarToCart(mat1_roi, mat2_roi, dst_roi, dst1_roi, 0); cv::ocl::polarToCart(gmat1, gmat2, gdst, gdst1, 0); Near(.5); Near1(.5); } } struct Magnitude : ArithmTestBase {}; TEST_P(Magnitude, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::magnitude(mat1_roi, mat2_roi, dst_roi); cv::ocl::magnitude(gmat1, gmat2, gdst); Near(1e-5); } } struct Transpose : ArithmTestBase {}; TEST_P(Transpose, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::transpose(mat1_roi, dst_roi); cv::ocl::transpose(gmat1, gdst); Near(1e-5); } } struct Flip : ArithmTestBase {}; TEST_P(Flip, X) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::flip(mat1_roi, dst_roi, 0); cv::ocl::flip(gmat1, gdst, 0); Near(1e-5); } } TEST_P(Flip, Y) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::flip(mat1_roi, dst_roi, 1); cv::ocl::flip(gmat1, gdst, 1); Near(1e-5); } } TEST_P(Flip, BOTH) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::flip(mat1_roi, dst_roi, -1); cv::ocl::flip(gmat1, gdst, -1); Near(1e-5); } } struct MinMax : ArithmTestBase {}; TEST_P(MinMax, MAT) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); double minVal, maxVal; cv::Point minLoc, maxLoc; if (mat1.depth() != CV_8S) { cv::minMaxLoc(mat1_roi, &minVal, &maxVal, &minLoc, &maxLoc); } else { minVal = std::numeric_limits::max(); maxVal = -std::numeric_limits::max(); for (int i = 0; i < mat1_roi.rows; ++i) for (int j = 0; j < mat1_roi.cols; ++j) { signed char val = mat1_roi.at(i, j); if (val < minVal) minVal = val; if (val > maxVal) maxVal = val; } } double minVal_, maxVal_; cv::ocl::minMax(gmat1, &minVal_, &maxVal_); EXPECT_DOUBLE_EQ(minVal_, minVal); EXPECT_DOUBLE_EQ(maxVal_, maxVal); } } TEST_P(MinMax, MASK) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); double minVal, maxVal; cv::Point minLoc, maxLoc; if (mat1.depth() != CV_8S) { cv::minMaxLoc(mat1_roi, &minVal, &maxVal, &minLoc, &maxLoc, mask_roi); } else { minVal = std::numeric_limits::max(); maxVal = -std::numeric_limits::max(); for (int i = 0; i < mat1_roi.rows; ++i) for (int j = 0; j < mat1_roi.cols; ++j) { signed char val = mat1_roi.at(i, j); unsigned char m = mask_roi.at(i, j); if (val < minVal && m) minVal = val; if (val > maxVal && m) maxVal = val; } } double minVal_, maxVal_; cv::ocl::minMax(gmat1, &minVal_, &maxVal_, gmask); EXPECT_DOUBLE_EQ(minVal_, minVal); EXPECT_DOUBLE_EQ(maxVal_, maxVal); } } struct MinMaxLoc : ArithmTestBase {}; TEST_P(MinMaxLoc, MAT) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); double minVal, maxVal; cv::Point minLoc, maxLoc; int depth = mat1.depth(); if (depth != CV_8S) { cv::minMaxLoc(mat1_roi, &minVal, &maxVal, &minLoc, &maxLoc); } else { minVal = std::numeric_limits::max(); maxVal = -std::numeric_limits::max(); for (int i = 0; i < mat1_roi.rows; ++i) for (int j = 0; j < mat1_roi.cols; ++j) { signed char val = mat1_roi.at(i, j); if (val < minVal) { minVal = val; minLoc.x = j; minLoc.y = i; } if (val > maxVal) { maxVal = val; maxLoc.x = j; maxLoc.y = i; } } } double minVal_, maxVal_; cv::Point minLoc_, maxLoc_; cv::ocl::minMaxLoc(gmat1, &minVal_, &maxVal_, &minLoc_, &maxLoc_, cv::ocl::oclMat()); double error0 = 0., error1 = 0., minlocVal = 0., minlocVal_ = 0., maxlocVal = 0., maxlocVal_ = 0.; if(depth == 0) { minlocVal = mat1_roi.at(minLoc); minlocVal_ = mat1_roi.at(minLoc_); maxlocVal = mat1_roi.at(maxLoc); maxlocVal_ = mat1_roi.at(maxLoc_); error0 = ::abs(mat1_roi.at(minLoc_) - mat1_roi.at(minLoc)); error1 = ::abs(mat1_roi.at(maxLoc_) - mat1_roi.at(maxLoc)); } if(depth == 1) { minlocVal = mat1_roi.at(minLoc); minlocVal_ = mat1_roi.at(minLoc_); maxlocVal = mat1_roi.at(maxLoc); maxlocVal_ = mat1_roi.at(maxLoc_); error0 = ::abs(mat1_roi.at(minLoc_) - mat1_roi.at(minLoc)); error1 = ::abs(mat1_roi.at(maxLoc_) - mat1_roi.at(maxLoc)); } if(depth == 2) { minlocVal = mat1_roi.at(minLoc); minlocVal_ = mat1_roi.at(minLoc_); maxlocVal = mat1_roi.at(maxLoc); maxlocVal_ = mat1_roi.at(maxLoc_); error0 = ::abs(mat1_roi.at(minLoc_) - mat1_roi.at(minLoc)); error1 = ::abs(mat1_roi.at(maxLoc_) - mat1_roi.at(maxLoc)); } if(depth == 3) { minlocVal = mat1_roi.at(minLoc); minlocVal_ = mat1_roi.at(minLoc_); maxlocVal = mat1_roi.at(maxLoc); maxlocVal_ = mat1_roi.at(maxLoc_); error0 = ::abs(mat1_roi.at(minLoc_) - mat1_roi.at(minLoc)); error1 = ::abs(mat1_roi.at(maxLoc_) - mat1_roi.at(maxLoc)); } if(depth == 4) { minlocVal = mat1_roi.at(minLoc); minlocVal_ = mat1_roi.at(minLoc_); maxlocVal = mat1_roi.at(maxLoc); maxlocVal_ = mat1_roi.at(maxLoc_); error0 = ::abs(mat1_roi.at(minLoc_) - mat1_roi.at(minLoc)); error1 = ::abs(mat1_roi.at(maxLoc_) - mat1_roi.at(maxLoc)); } if(depth == 5) { minlocVal = mat1_roi.at(minLoc); minlocVal_ = mat1_roi.at(minLoc_); maxlocVal = mat1_roi.at(maxLoc); maxlocVal_ = mat1_roi.at(maxLoc_); error0 = ::abs(mat1_roi.at(minLoc_) - mat1_roi.at(minLoc)); error1 = ::abs(mat1_roi.at(maxLoc_) - mat1_roi.at(maxLoc)); } if(depth == 6) { minlocVal = mat1_roi.at(minLoc); minlocVal_ = mat1_roi.at(minLoc_); maxlocVal = mat1_roi.at(maxLoc); maxlocVal_ = mat1_roi.at(maxLoc_); error0 = ::abs(mat1_roi.at(minLoc_) - mat1_roi.at(minLoc)); error1 = ::abs(mat1_roi.at(maxLoc_) - mat1_roi.at(maxLoc)); } EXPECT_DOUBLE_EQ(minVal_, minVal); EXPECT_DOUBLE_EQ(maxVal_, maxVal); EXPECT_DOUBLE_EQ(minlocVal_, minlocVal); EXPECT_DOUBLE_EQ(maxlocVal_, maxlocVal); EXPECT_DOUBLE_EQ(error0, 0.0); EXPECT_DOUBLE_EQ(error1, 0.0); } } TEST_P(MinMaxLoc, MASK) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); double minVal, maxVal; cv::Point minLoc, maxLoc; int depth = mat1.depth(); if (depth != CV_8S) { cv::minMaxLoc(mat1_roi, &minVal, &maxVal, &minLoc, &maxLoc, mask_roi); } else { minVal = std::numeric_limits::max(); maxVal = -std::numeric_limits::max(); for (int i = 0; i < mat1_roi.rows; ++i) for (int j = 0; j < mat1_roi.cols; ++j) { signed char val = mat1_roi.at(i, j); unsigned char m = mask_roi.at(i , j); if (val < minVal && m) { minVal = val; minLoc.x = j; minLoc.y = i; } if (val > maxVal && m) { maxVal = val; maxLoc.x = j; maxLoc.y = i; } } } double minVal_, maxVal_; cv::Point minLoc_, maxLoc_; cv::ocl::minMaxLoc(gmat1, &minVal_, &maxVal_, &minLoc_, &maxLoc_, gmask); double error0 = 0., error1 = 0., minlocVal = 0., minlocVal_ = 0., maxlocVal = 0., maxlocVal_ = 0.; if(minLoc_.x == -1 || minLoc_.y == -1 || maxLoc_.x == -1 || maxLoc_.y == -1) continue; if(depth == 0) { minlocVal = mat1_roi.at(minLoc); minlocVal_ = mat1_roi.at(minLoc_); maxlocVal = mat1_roi.at(maxLoc); maxlocVal_ = mat1_roi.at(maxLoc_); error0 = ::abs(mat1_roi.at(minLoc_) - mat1_roi.at(minLoc)); error1 = ::abs(mat1_roi.at(maxLoc_) - mat1_roi.at(maxLoc)); } if(depth == 1) { minlocVal = mat1_roi.at(minLoc); minlocVal_ = mat1_roi.at(minLoc_); maxlocVal = mat1_roi.at(maxLoc); maxlocVal_ = mat1_roi.at(maxLoc_); error0 = ::abs(mat1_roi.at(minLoc_) - mat1_roi.at(minLoc)); error1 = ::abs(mat1_roi.at(maxLoc_) - mat1_roi.at(maxLoc)); } if(depth == 2) { minlocVal = mat1_roi.at(minLoc); minlocVal_ = mat1_roi.at(minLoc_); maxlocVal = mat1_roi.at(maxLoc); maxlocVal_ = mat1_roi.at(maxLoc_); error0 = ::abs(mat1_roi.at(minLoc_) - mat1_roi.at(minLoc)); error1 = ::abs(mat1_roi.at(maxLoc_) - mat1_roi.at(maxLoc)); } if(depth == 3) { minlocVal = mat1_roi.at(minLoc); minlocVal_ = mat1_roi.at(minLoc_); maxlocVal = mat1_roi.at(maxLoc); maxlocVal_ = mat1_roi.at(maxLoc_); error0 = ::abs(mat1_roi.at(minLoc_) - mat1_roi.at(minLoc)); error1 = ::abs(mat1_roi.at(maxLoc_) - mat1_roi.at(maxLoc)); } if(depth == 4) { minlocVal = mat1_roi.at(minLoc); minlocVal_ = mat1_roi.at(minLoc_); maxlocVal = mat1_roi.at(maxLoc); maxlocVal_ = mat1_roi.at(maxLoc_); error0 = ::abs(mat1_roi.at(minLoc_) - mat1_roi.at(minLoc)); error1 = ::abs(mat1_roi.at(maxLoc_) - mat1_roi.at(maxLoc)); } if(depth == 5) { minlocVal = mat1_roi.at(minLoc); minlocVal_ = mat1_roi.at(minLoc_); maxlocVal = mat1_roi.at(maxLoc); maxlocVal_ = mat1_roi.at(maxLoc_); error0 = ::abs(mat1_roi.at(minLoc_) - mat1_roi.at(minLoc)); error1 = ::abs(mat1_roi.at(maxLoc_) - mat1_roi.at(maxLoc)); } if(depth == 6) { minlocVal = mat1_roi.at(minLoc); minlocVal_ = mat1_roi.at(minLoc_); maxlocVal = mat1_roi.at(maxLoc); maxlocVal_ = mat1_roi.at(maxLoc_); error0 = ::abs(mat1_roi.at(minLoc_) - mat1_roi.at(minLoc)); error1 = ::abs(mat1_roi.at(maxLoc_) - mat1_roi.at(maxLoc)); } EXPECT_DOUBLE_EQ(minVal_, minVal); EXPECT_DOUBLE_EQ(maxVal_, maxVal); EXPECT_DOUBLE_EQ(minlocVal_, minlocVal); EXPECT_DOUBLE_EQ(maxlocVal_, maxlocVal); EXPECT_DOUBLE_EQ(error0, 0.0); EXPECT_DOUBLE_EQ(error1, 0.0); } } struct Sum : ArithmTestBase {}; TEST_P(Sum, MAT) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); Scalar cpures = cv::sum(mat1_roi); Scalar gpures = cv::ocl::sum(gmat1); //check results EXPECT_NEAR(cpures[0], gpures[0], 0.1); EXPECT_NEAR(cpures[1], gpures[1], 0.1); EXPECT_NEAR(cpures[2], gpures[2], 0.1); EXPECT_NEAR(cpures[3], gpures[3], 0.1); } } struct CountNonZero : ArithmTestBase {}; TEST_P(CountNonZero, MAT) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); int cpures = cv::countNonZero(mat1_roi); int gpures = cv::ocl::countNonZero(gmat1); EXPECT_DOUBLE_EQ((double)cpures, (double)gpures); } } ////////////////////////////////phase///////////////////////////////////////////////// struct Phase : ArithmTestBase {}; TEST_P(Phase, Mat) { if(mat1.depth() != CV_32F && mat1.depth() != CV_64F) { cout << "\tUnsupported type\t\n"; } for(int angelInDegrees = 0; angelInDegrees < 2; angelInDegrees++) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::phase(mat1_roi, mat2_roi, dst_roi, angelInDegrees ? true : false); cv::ocl::phase(gmat1, gmat2, gdst, angelInDegrees ? true : false); Near(1e-2); } } } ////////////////////////////////bitwise_and///////////////////////////////////////////////// struct Bitwise_and : ArithmTestBase {}; TEST_P(Bitwise_and, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::bitwise_and(mat1_roi, mat2_roi, dst_roi); cv::ocl::bitwise_and(gmat1, gmat2, gdst); Near(0); } } TEST_P(Bitwise_and, Mat_Mask) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::bitwise_and(mat1_roi, mat2_roi, dst_roi, mask_roi); cv::ocl::bitwise_and(gmat1, gmat2, gdst, gmask); Near(0); } } TEST_P(Bitwise_and, Scalar) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::bitwise_and(mat1_roi, val, dst_roi); cv::ocl::bitwise_and(gmat1, val, gdst); Near(1e-5); } } TEST_P(Bitwise_and, Scalar_Mask) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::bitwise_and(mat1_roi, val, dst_roi, mask_roi); cv::ocl::bitwise_and(gmat1, val, gdst, gmask); Near(1e-5); } } ////////////////////////////////bitwise_or///////////////////////////////////////////////// struct Bitwise_or : ArithmTestBase {}; TEST_P(Bitwise_or, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::bitwise_or(mat1_roi, mat2_roi, dst_roi); cv::ocl::bitwise_or(gmat1, gmat2, gdst); Near(0); } } TEST_P(Bitwise_or, Mat_Mask) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::bitwise_or(mat1_roi, mat2_roi, dst_roi, mask_roi); cv::ocl::bitwise_or(gmat1, gmat2, gdst, gmask); Near(0); } } TEST_P(Bitwise_or, Scalar) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::bitwise_or(mat1_roi, val, dst_roi); cv::ocl::bitwise_or(gmat1, val, gdst); Near(1e-5); } } TEST_P(Bitwise_or, Scalar_Mask) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::bitwise_or(mat1_roi, val, dst_roi, mask_roi); cv::ocl::bitwise_or(gmat1, val, gdst, gmask); Near(1e-5); } } ////////////////////////////////bitwise_xor///////////////////////////////////////////////// struct Bitwise_xor : ArithmTestBase {}; TEST_P(Bitwise_xor, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::bitwise_xor(mat1_roi, mat2_roi, dst_roi); cv::ocl::bitwise_xor(gmat1, gmat2, gdst); Near(0); } } TEST_P(Bitwise_xor, Mat_Mask) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::bitwise_xor(mat1_roi, mat2_roi, dst_roi, mask_roi); cv::ocl::bitwise_xor(gmat1, gmat2, gdst, gmask); Near(0); } } TEST_P(Bitwise_xor, Scalar) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::bitwise_xor(mat1_roi, val, dst_roi); cv::ocl::bitwise_xor(gmat1, val, gdst); Near(1e-5); } } TEST_P(Bitwise_xor, Scalar_Mask) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::bitwise_xor(mat1_roi, val, dst_roi, mask_roi); cv::ocl::bitwise_xor(gmat1, val, gdst, gmask); Near(1e-5); } } ////////////////////////////////bitwise_not///////////////////////////////////////////////// struct Bitwise_not : ArithmTestBase {}; TEST_P(Bitwise_not, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::bitwise_not(mat1_roi, dst_roi); cv::ocl::bitwise_not(gmat1, gdst); Near(0); } } ////////////////////////////////compare///////////////////////////////////////////////// struct Compare : ArithmTestBase {}; TEST_P(Compare, Mat) { if(mat1.type() == CV_8SC1) //if(mat1.type() != CV_8UC1 || mat1.type()!= CV_16UC1 || mat1.type()!= CV_16SC1|| mat1.type()!= CV_32SC1 || mat1.type()!= CV_32FC1|| mat1.type()!= CV_64FC1) { cout << "\tUnsupported type\t\n"; } int cmp_codes[] = {CMP_EQ, CMP_GT, CMP_GE, CMP_LT, CMP_LE, CMP_NE}; //const char *cmp_str[] = {"CMP_EQ", "CMP_GT", "CMP_GE", "CMP_LT", "CMP_LE", "CMP_NE"}; int cmp_num = sizeof(cmp_codes) / sizeof(int); for (int i = 0; i < cmp_num; ++i) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::compare(mat1_roi, mat2_roi, dst_roi, cmp_codes[i]); cv::ocl::compare(gmat1, gmat2, gdst, cmp_codes[i]); Near(0); } } } struct Pow : ArithmTestBase {}; TEST_P(Pow, Mat) { if(mat1.depth() != CV_32F && mat1.depth() != CV_64F) { cout << "\tUnsupported type\t\n"; } for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); double p = 4.5; cv::pow(mat1_roi, p, dst_roi); cv::ocl::pow(gmat1, p, gdst); Near(1); } } struct MagnitudeSqr : ArithmTestBase {}; TEST_P(MagnitudeSqr, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); for(int i = 0; i < mat1.rows; ++i) for(int j = 0; j < mat1.cols; ++j) { float val1 = mat1.at(i, j); float val2 = mat2.at(i, j); ((float *)(dst.data))[i * dst.step / 4 + j] = val1 * val1 + val2 * val2; } cv::ocl::oclMat clmat1(mat1), clmat2(mat2); cv::ocl::magnitudeSqr(clmat1, clmat2, gdst); Near(1); } } struct AddWeighted : ArithmTestBase {}; TEST_P(AddWeighted, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); double alpha = 2.0, beta = 1.0, gama = 3.0; cv::addWeighted(mat1_roi, alpha, mat2_roi, beta, gama, dst_roi); // cv::ocl::oclMat clmat1(mat1),clmat2(mat2),cldst; cv::ocl::addWeighted(gmat1, alpha, gmat2, beta, gama, gdst); Near(1e-5); } } //********test**************** INSTANTIATE_TEST_CASE_P(Arithm, Lut, Combine( Values(CV_8UC1, CV_8UC3, CV_8UC4), Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(Arithm, Exp, Combine( Values(CV_32FC1, CV_32FC1), Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(Arithm, Log, Combine( Values(CV_32FC1, CV_32FC1), Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(Arithm, Add, Combine( Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4), Values(false))); INSTANTIATE_TEST_CASE_P(Arithm, Sub, Combine( Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4), Values(false))); INSTANTIATE_TEST_CASE_P(Arithm, Mul, Combine( Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4), Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(Arithm, Div, Combine( Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4), Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(Arithm, Absdiff, Combine( Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4), Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(Arithm, CartToPolar, Combine( Values(CV_32FC1, CV_32FC3, CV_32FC4), Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(Arithm, PolarToCart, Combine( Values(CV_32FC1, CV_32FC3, CV_32FC4), Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(Arithm, Magnitude, Combine( Values(CV_32FC1, CV_32FC3, CV_32FC4), Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(Arithm, Transpose, Combine( Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32FC1), Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(Arithm, Flip, Combine( Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4), Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(Arithm, MinMax, Combine( Values(CV_8UC1, CV_32SC1, CV_32FC1), Values(false))); INSTANTIATE_TEST_CASE_P(Arithm, MinMaxLoc, Combine( Values(CV_8UC1, CV_32SC1, CV_32FC1), Values(false))); INSTANTIATE_TEST_CASE_P(Arithm, Sum, Combine( Values(CV_8U, CV_32S, CV_32F), Values(false))); INSTANTIATE_TEST_CASE_P(Arithm, CountNonZero, Combine( Values(CV_8U, CV_32S, CV_32F), Values(false))); INSTANTIATE_TEST_CASE_P(Arithm, Phase, Combine(Values(CV_32FC1, CV_32FC3, CV_32FC4), Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(Arithm, Bitwise_and, Combine( Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4), Values(false))); //Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(Arithm, Bitwise_or, Combine( Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32FC1, CV_32FC3, CV_32FC4), Values(false))); //Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(Arithm, Bitwise_xor, Combine( Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32FC1, CV_32FC3, CV_32FC4), Values(false))); //Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(Arithm, Bitwise_not, Combine( Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32FC1, CV_32FC3, CV_32FC4), Values(false))); //Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(Arithm, Compare, Combine(Values(CV_8UC1, CV_32SC1, CV_32FC1), Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(Arithm, Pow, Combine(Values(CV_32FC1, CV_32FC3, CV_32FC4), Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(Arithm, MagnitudeSqr, Combine( Values(CV_32FC1, CV_32FC1), Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(Arithm, AddWeighted, Combine( Values(CV_8UC1, CV_32SC1, CV_32FC1), Values(false))); // Values(false) is the reserved parameter #endif // HAVE_OPENCL