/* slasd3.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static integer c__1 = 1; static integer c__0 = 0; static real c_b13 = 1.f; static real c_b26 = 0.f; /* Subroutine */ int slasd3_(integer *nl, integer *nr, integer *sqre, integer *k, real *d__, real *q, integer *ldq, real *dsigma, real *u, integer * ldu, real *u2, integer *ldu2, real *vt, integer *ldvt, real *vt2, integer *ldvt2, integer *idxc, integer *ctot, real *z__, integer * info) { /* System generated locals */ integer q_dim1, q_offset, u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset, vt2_dim1, vt2_offset, i__1, i__2; real r__1, r__2; /* Builtin functions */ double sqrt(doublereal), r_sign(real *, real *); /* Local variables */ integer i__, j, m, n, jc; real rho; integer nlp1, nlp2, nrp1; real temp; extern doublereal snrm2_(integer *, real *, integer *); integer ctemp; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); integer ktemp; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *); extern doublereal slamc3_(real *, real *); extern /* Subroutine */ int slasd4_(integer *, integer *, real *, real *, real *, real *, real *, real *, integer *), xerbla_(char *, integer *), slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *); /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLASD3 finds all the square roots of the roots of the secular */ /* equation, as defined by the values in D and Z. It makes the */ /* appropriate calls to SLASD4 and then updates the singular */ /* vectors by matrix multiplication. */ /* This code makes very mild assumptions about floating point */ /* arithmetic. It will work on machines with a guard digit in */ /* add/subtract, or on those binary machines without guard digits */ /* which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */ /* It could conceivably fail on hexadecimal or decimal machines */ /* without guard digits, but we know of none. */ /* SLASD3 is called from SLASD1. */ /* Arguments */ /* ========= */ /* NL (input) INTEGER */ /* The row dimension of the upper block. NL >= 1. */ /* NR (input) INTEGER */ /* The row dimension of the lower block. NR >= 1. */ /* SQRE (input) INTEGER */ /* = 0: the lower block is an NR-by-NR square matrix. */ /* = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */ /* The bidiagonal matrix has N = NL + NR + 1 rows and */ /* M = N + SQRE >= N columns. */ /* K (input) INTEGER */ /* The size of the secular equation, 1 =< K = < N. */ /* D (output) REAL array, dimension(K) */ /* On exit the square roots of the roots of the secular equation, */ /* in ascending order. */ /* Q (workspace) REAL array, */ /* dimension at least (LDQ,K). */ /* LDQ (input) INTEGER */ /* The leading dimension of the array Q. LDQ >= K. */ /* DSIGMA (input/output) REAL array, dimension(K) */ /* The first K elements of this array contain the old roots */ /* of the deflated updating problem. These are the poles */ /* of the secular equation. */ /* U (output) REAL array, dimension (LDU, N) */ /* The last N - K columns of this matrix contain the deflated */ /* left singular vectors. */ /* LDU (input) INTEGER */ /* The leading dimension of the array U. LDU >= N. */ /* U2 (input) REAL array, dimension (LDU2, N) */ /* The first K columns of this matrix contain the non-deflated */ /* left singular vectors for the split problem. */ /* LDU2 (input) INTEGER */ /* The leading dimension of the array U2. LDU2 >= N. */ /* VT (output) REAL array, dimension (LDVT, M) */ /* The last M - K columns of VT' contain the deflated */ /* right singular vectors. */ /* LDVT (input) INTEGER */ /* The leading dimension of the array VT. LDVT >= N. */ /* VT2 (input/output) REAL array, dimension (LDVT2, N) */ /* The first K columns of VT2' contain the non-deflated */ /* right singular vectors for the split problem. */ /* LDVT2 (input) INTEGER */ /* The leading dimension of the array VT2. LDVT2 >= N. */ /* IDXC (input) INTEGER array, dimension (N) */ /* The permutation used to arrange the columns of U (and rows of */ /* VT) into three groups: the first group contains non-zero */ /* entries only at and above (or before) NL +1; the second */ /* contains non-zero entries only at and below (or after) NL+2; */ /* and the third is dense. The first column of U and the row of */ /* VT are treated separately, however. */ /* The rows of the singular vectors found by SLASD4 */ /* must be likewise permuted before the matrix multiplies can */ /* take place. */ /* CTOT (input) INTEGER array, dimension (4) */ /* A count of the total number of the various types of columns */ /* in U (or rows in VT), as described in IDXC. The fourth column */ /* type is any column which has been deflated. */ /* Z (input/output) REAL array, dimension (K) */ /* The first K elements of this array contain the components */ /* of the deflation-adjusted updating row vector. */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > 0: if INFO = 1, an singular value did not converge */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Ming Gu and Huan Ren, Computer Science Division, University of */ /* California at Berkeley, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --dsigma; u_dim1 = *ldu; u_offset = 1 + u_dim1; u -= u_offset; u2_dim1 = *ldu2; u2_offset = 1 + u2_dim1; u2 -= u2_offset; vt_dim1 = *ldvt; vt_offset = 1 + vt_dim1; vt -= vt_offset; vt2_dim1 = *ldvt2; vt2_offset = 1 + vt2_dim1; vt2 -= vt2_offset; --idxc; --ctot; --z__; /* Function Body */ *info = 0; if (*nl < 1) { *info = -1; } else if (*nr < 1) { *info = -2; } else if (*sqre != 1 && *sqre != 0) { *info = -3; } n = *nl + *nr + 1; m = n + *sqre; nlp1 = *nl + 1; nlp2 = *nl + 2; if (*k < 1 || *k > n) { *info = -4; } else if (*ldq < *k) { *info = -7; } else if (*ldu < n) { *info = -10; } else if (*ldu2 < n) { *info = -12; } else if (*ldvt < m) { *info = -14; } else if (*ldvt2 < m) { *info = -16; } if (*info != 0) { i__1 = -(*info); xerbla_("SLASD3", &i__1); return 0; } /* Quick return if possible */ if (*k == 1) { d__[1] = dabs(z__[1]); scopy_(&m, &vt2[vt2_dim1 + 1], ldvt2, &vt[vt_dim1 + 1], ldvt); if (z__[1] > 0.f) { scopy_(&n, &u2[u2_dim1 + 1], &c__1, &u[u_dim1 + 1], &c__1); } else { i__1 = n; for (i__ = 1; i__ <= i__1; ++i__) { u[i__ + u_dim1] = -u2[i__ + u2_dim1]; /* L10: */ } } return 0; } /* Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can */ /* be computed with high relative accuracy (barring over/underflow). */ /* This is a problem on machines without a guard digit in */ /* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */ /* The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), */ /* which on any of these machines zeros out the bottommost */ /* bit of DSIGMA(I) if it is 1; this makes the subsequent */ /* subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation */ /* occurs. On binary machines with a guard digit (almost all */ /* machines) it does not change DSIGMA(I) at all. On hexadecimal */ /* and decimal machines with a guard digit, it slightly */ /* changes the bottommost bits of DSIGMA(I). It does not account */ /* for hexadecimal or decimal machines without guard digits */ /* (we know of none). We use a subroutine call to compute */ /* 2*DSIGMA(I) to prevent optimizing compilers from eliminating */ /* this code. */ i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { dsigma[i__] = slamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__]; /* L20: */ } /* Keep a copy of Z. */ scopy_(k, &z__[1], &c__1, &q[q_offset], &c__1); /* Normalize Z. */ rho = snrm2_(k, &z__[1], &c__1); slascl_("G", &c__0, &c__0, &rho, &c_b13, k, &c__1, &z__[1], k, info); rho *= rho; /* Find the new singular values. */ i__1 = *k; for (j = 1; j <= i__1; ++j) { slasd4_(k, &j, &dsigma[1], &z__[1], &u[j * u_dim1 + 1], &rho, &d__[j], &vt[j * vt_dim1 + 1], info); /* If the zero finder fails, the computation is terminated. */ if (*info != 0) { return 0; } /* L30: */ } /* Compute updated Z. */ i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { z__[i__] = u[i__ + *k * u_dim1] * vt[i__ + *k * vt_dim1]; i__2 = i__ - 1; for (j = 1; j <= i__2; ++j) { z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[ i__] - dsigma[j]) / (dsigma[i__] + dsigma[j]); /* L40: */ } i__2 = *k - 1; for (j = i__; j <= i__2; ++j) { z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[ i__] - dsigma[j + 1]) / (dsigma[i__] + dsigma[j + 1]); /* L50: */ } r__2 = sqrt((r__1 = z__[i__], dabs(r__1))); z__[i__] = r_sign(&r__2, &q[i__ + q_dim1]); /* L60: */ } /* Compute left singular vectors of the modified diagonal matrix, */ /* and store related information for the right singular vectors. */ i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { vt[i__ * vt_dim1 + 1] = z__[1] / u[i__ * u_dim1 + 1] / vt[i__ * vt_dim1 + 1]; u[i__ * u_dim1 + 1] = -1.f; i__2 = *k; for (j = 2; j <= i__2; ++j) { vt[j + i__ * vt_dim1] = z__[j] / u[j + i__ * u_dim1] / vt[j + i__ * vt_dim1]; u[j + i__ * u_dim1] = dsigma[j] * vt[j + i__ * vt_dim1]; /* L70: */ } temp = snrm2_(k, &u[i__ * u_dim1 + 1], &c__1); q[i__ * q_dim1 + 1] = u[i__ * u_dim1 + 1] / temp; i__2 = *k; for (j = 2; j <= i__2; ++j) { jc = idxc[j]; q[j + i__ * q_dim1] = u[jc + i__ * u_dim1] / temp; /* L80: */ } /* L90: */ } /* Update the left singular vector matrix. */ if (*k == 2) { sgemm_("N", "N", &n, k, k, &c_b13, &u2[u2_offset], ldu2, &q[q_offset], ldq, &c_b26, &u[u_offset], ldu); goto L100; } if (ctot[1] > 0) { sgemm_("N", "N", nl, k, &ctot[1], &c_b13, &u2[(u2_dim1 << 1) + 1], ldu2, &q[q_dim1 + 2], ldq, &c_b26, &u[u_dim1 + 1], ldu); if (ctot[3] > 0) { ktemp = ctot[1] + 2 + ctot[2]; sgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1] , ldu2, &q[ktemp + q_dim1], ldq, &c_b13, &u[u_dim1 + 1], ldu); } } else if (ctot[3] > 0) { ktemp = ctot[1] + 2 + ctot[2]; sgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1], ldu2, &q[ktemp + q_dim1], ldq, &c_b26, &u[u_dim1 + 1], ldu); } else { slacpy_("F", nl, k, &u2[u2_offset], ldu2, &u[u_offset], ldu); } scopy_(k, &q[q_dim1 + 1], ldq, &u[nlp1 + u_dim1], ldu); ktemp = ctot[1] + 2; ctemp = ctot[2] + ctot[3]; sgemm_("N", "N", nr, k, &ctemp, &c_b13, &u2[nlp2 + ktemp * u2_dim1], ldu2, &q[ktemp + q_dim1], ldq, &c_b26, &u[nlp2 + u_dim1], ldu); /* Generate the right singular vectors. */ L100: i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { temp = snrm2_(k, &vt[i__ * vt_dim1 + 1], &c__1); q[i__ + q_dim1] = vt[i__ * vt_dim1 + 1] / temp; i__2 = *k; for (j = 2; j <= i__2; ++j) { jc = idxc[j]; q[i__ + j * q_dim1] = vt[jc + i__ * vt_dim1] / temp; /* L110: */ } /* L120: */ } /* Update the right singular vector matrix. */ if (*k == 2) { sgemm_("N", "N", k, &m, k, &c_b13, &q[q_offset], ldq, &vt2[vt2_offset] , ldvt2, &c_b26, &vt[vt_offset], ldvt); return 0; } ktemp = ctot[1] + 1; sgemm_("N", "N", k, &nlp1, &ktemp, &c_b13, &q[q_dim1 + 1], ldq, &vt2[ vt2_dim1 + 1], ldvt2, &c_b26, &vt[vt_dim1 + 1], ldvt); ktemp = ctot[1] + 2 + ctot[2]; if (ktemp <= *ldvt2) { sgemm_("N", "N", k, &nlp1, &ctot[3], &c_b13, &q[ktemp * q_dim1 + 1], ldq, &vt2[ktemp + vt2_dim1], ldvt2, &c_b13, &vt[vt_dim1 + 1], ldvt); } ktemp = ctot[1] + 1; nrp1 = *nr + *sqre; if (ktemp > 1) { i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { q[i__ + ktemp * q_dim1] = q[i__ + q_dim1]; /* L130: */ } i__1 = m; for (i__ = nlp2; i__ <= i__1; ++i__) { vt2[ktemp + i__ * vt2_dim1] = vt2[i__ * vt2_dim1 + 1]; /* L140: */ } } ctemp = ctot[2] + 1 + ctot[3]; sgemm_("N", "N", k, &nrp1, &ctemp, &c_b13, &q[ktemp * q_dim1 + 1], ldq, & vt2[ktemp + nlp2 * vt2_dim1], ldvt2, &c_b26, &vt[nlp2 * vt_dim1 + 1], ldvt); return 0; /* End of SLASD3 */ } /* slasd3_ */