/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "opencv2/calib3d/calib3d_c.h" using namespace cv; using namespace std; class CV_POSITTest : public cvtest::BaseTest { public: CV_POSITTest(); protected: void run(int); }; CV_POSITTest::CV_POSITTest() { test_case_count = 20; } void CV_POSITTest::run( int start_from ) { int code = cvtest::TS::OK; /* fixed parameters output */ /*float rot[3][3]={ 0.49010f, 0.85057f, 0.19063f, -0.56948f, 0.14671f, 0.80880f, 0.65997f, -0.50495f, 0.55629f }; float trans[3] = { 0.0f, 0.0f, 40.02637f }; */ /* Some variables */ int i, counter; CvTermCriteria criteria; CvPoint3D32f* obj_points; CvPoint2D32f* img_points; CvPOSITObject* object; float angleX, angleY, angleZ; RNG& rng = ts->get_rng(); int progress = 0; CvMat* true_rotationX = cvCreateMat( 3, 3, CV_32F ); CvMat* true_rotationY = cvCreateMat( 3, 3, CV_32F ); CvMat* true_rotationZ = cvCreateMat( 3, 3, CV_32F ); CvMat* tmp_matrix = cvCreateMat( 3, 3, CV_32F ); CvMat* true_rotation = cvCreateMat( 3, 3, CV_32F ); CvMat* rotation = cvCreateMat( 3, 3, CV_32F ); CvMat* translation = cvCreateMat( 3, 1, CV_32F ); CvMat* true_translation = cvCreateMat( 3, 1, CV_32F ); const float flFocalLength = 760.f; const float flEpsilon = 0.5f; /* Initilization */ criteria.type = CV_TERMCRIT_EPS|CV_TERMCRIT_ITER; criteria.epsilon = flEpsilon; criteria.max_iter = 10000; /* Allocating source arrays; */ obj_points = (CvPoint3D32f*)cvAlloc( 8 * sizeof(CvPoint3D32f) ); img_points = (CvPoint2D32f*)cvAlloc( 8 * sizeof(CvPoint2D32f) ); /* Fill points arrays with values */ /* cube model with edge size 10 */ obj_points[0].x = 0; obj_points[0].y = 0; obj_points[0].z = 0; obj_points[1].x = 10; obj_points[1].y = 0; obj_points[1].z = 0; obj_points[2].x = 10; obj_points[2].y = 10; obj_points[2].z = 0; obj_points[3].x = 0; obj_points[3].y = 10; obj_points[3].z = 0; obj_points[4].x = 0; obj_points[4].y = 0; obj_points[4].z = 10; obj_points[5].x = 10; obj_points[5].y = 0; obj_points[5].z = 10; obj_points[6].x = 10; obj_points[6].y = 10; obj_points[6].z = 10; obj_points[7].x = 0; obj_points[7].y = 10; obj_points[7].z = 10; /* Loop for test some random object positions */ for( counter = start_from; counter < test_case_count; counter++ ) { ts->update_context( this, counter, true ); progress = update_progress( progress, counter, test_case_count, 0 ); /* set all rotation matrix to zero */ cvZero( true_rotationX ); cvZero( true_rotationY ); cvZero( true_rotationZ ); /* fill random rotation matrix */ angleX = (float)(cvtest::randReal(rng)*2*CV_PI); angleY = (float)(cvtest::randReal(rng)*2*CV_PI); angleZ = (float)(cvtest::randReal(rng)*2*CV_PI); true_rotationX->data.fl[0 *3+ 0] = 1; true_rotationX->data.fl[1 *3+ 1] = (float)cos(angleX); true_rotationX->data.fl[2 *3+ 2] = true_rotationX->data.fl[1 *3+ 1]; true_rotationX->data.fl[1 *3+ 2] = -(float)sin(angleX); true_rotationX->data.fl[2 *3+ 1] = -true_rotationX->data.fl[1 *3+ 2]; true_rotationY->data.fl[1 *3+ 1] = 1; true_rotationY->data.fl[0 *3+ 0] = (float)cos(angleY); true_rotationY->data.fl[2 *3+ 2] = true_rotationY->data.fl[0 *3+ 0]; true_rotationY->data.fl[0 *3+ 2] = -(float)sin(angleY); true_rotationY->data.fl[2 *3+ 0] = -true_rotationY->data.fl[0 *3+ 2]; true_rotationZ->data.fl[2 *3+ 2] = 1; true_rotationZ->data.fl[0 *3+ 0] = (float)cos(angleZ); true_rotationZ->data.fl[1 *3+ 1] = true_rotationZ->data.fl[0 *3+ 0]; true_rotationZ->data.fl[0 *3+ 1] = -(float)sin(angleZ); true_rotationZ->data.fl[1 *3+ 0] = -true_rotationZ->data.fl[0 *3+ 1]; cvMatMul( true_rotationX, true_rotationY, tmp_matrix); cvMatMul( tmp_matrix, true_rotationZ, true_rotation); /* fill translation vector */ true_translation->data.fl[2] = (float)(cvtest::randReal(rng)*(2*flFocalLength-40) + 60); true_translation->data.fl[0] = (float)((cvtest::randReal(rng)*2-1)*true_translation->data.fl[2]); true_translation->data.fl[1] = (float)((cvtest::randReal(rng)*2-1)*true_translation->data.fl[2]); /* calculate perspective projection */ for ( i = 0; i < 8; i++ ) { float vec[3]; CvMat Vec = cvMat( 3, 1, CV_32F, vec ); CvMat Obj_point = cvMat( 3, 1, CV_32F, &obj_points[i].x ); cvMatMul( true_rotation, &Obj_point, &Vec ); vec[0] += true_translation->data.fl[0]; vec[1] += true_translation->data.fl[1]; vec[2] += true_translation->data.fl[2]; img_points[i].x = flFocalLength * vec[0] / vec[2]; img_points[i].y = flFocalLength * vec[1] / vec[2]; } /*img_points[0].x = 0 ; img_points[0].y = 0; img_points[1].x = 80; img_points[1].y = -93; img_points[2].x = 245;img_points[2].y = -77; img_points[3].x = 185;img_points[3].y = 32; img_points[4].x = 32; img_points[4].y = 135; img_points[5].x = 99; img_points[5].y = 35; img_points[6].x = 247; img_points[6].y = 62; img_points[7].x = 195; img_points[7].y = 179; */ object = cvCreatePOSITObject( obj_points, 8 ); cvPOSIT( object, img_points, flFocalLength, criteria, rotation->data.fl, translation->data.fl ); cvReleasePOSITObject( &object ); Mat _rotation = cvarrToMat(rotation), _true_rotation = cvarrToMat(true_rotation); Mat _translation = cvarrToMat(translation), _true_translation = cvarrToMat(true_translation); code = cvtest::cmpEps2( ts, _rotation, _true_rotation, flEpsilon, false, "rotation matrix" ); if( code < 0 ) break; code = cvtest::cmpEps2( ts, _translation, _true_translation, flEpsilon, false, "translation vector" ); if( code < 0 ) break; } cvFree( &obj_points ); cvFree( &img_points ); cvReleaseMat( &true_rotationX ); cvReleaseMat( &true_rotationY ); cvReleaseMat( &true_rotationZ ); cvReleaseMat( &tmp_matrix ); cvReleaseMat( &true_rotation ); cvReleaseMat( &rotation ); cvReleaseMat( &translation ); cvReleaseMat( &true_translation ); if( code < 0 ) ts->set_failed_test_info( code ); } TEST(Calib3d_POSIT, accuracy) { CV_POSITTest test; test.safe_run(); } /* End of file. */