/////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas // Digital Ltd. LLC // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Industrial Light & Magic nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /////////////////////////////////////////////////////////////////////////// //----------------------------------------------------------------------------- // // Routines that generate pseudo-random numbers compatible // with the standard erand48(), nrand48(), etc. functions. // //----------------------------------------------------------------------------- #include "ImathRandom.h" #include "ImathInt64.h" namespace Imath { namespace { // // Static state used by Imath::drand48(), Imath::lrand48() and Imath::srand48() // unsigned short staticState[3] = {0, 0, 0}; void rand48Next (unsigned short state[3]) { // // drand48() and friends are all based on a linear congruential // sequence, // // x[n+1] = (a * x[n] + c) % m, // // where a and c are as specified below, and m == (1 << 48) // static const Int64 a = Int64 (0x5deece66dLL); static const Int64 c = Int64 (0xbLL); // // Assemble the 48-bit value x[n] from the // three 16-bit values stored in state. // Int64 x = (Int64 (state[2]) << 32) | (Int64 (state[1]) << 16) | Int64 (state[0]); // // Compute x[n+1], except for the "modulo m" part. // x = a * x + c; // // Disassemble the 48 least significant bits of x[n+1] into // three 16-bit values. Discard the 16 most significant bits; // this takes care of the "modulo m" operation. // // We assume that sizeof (unsigned short) == 2. // state[2] = (unsigned short)(x >> 32); state[1] = (unsigned short)(x >> 16); state[0] = (unsigned short)(x); } } // namespace double erand48 (unsigned short state[3]) { // // Generate double-precision floating-point values between 0.0 and 1.0: // // The exponent is set to 0x3ff, which indicates a value greater // than or equal to 1.0, and less than 2.0. The 48 most significant // bits of the significand (mantissa) are filled with pseudo-random // bits generated by rand48Next(). The remaining 4 bits are a copy // of the 4 most significant bits of the significand. This results // in bit patterns between 0x3ff0000000000000 and 0x3fffffffffffffff, // which correspond to uniformly distributed floating-point values // between 1.0 and 1.99999999999999978. Subtracting 1.0 from those // values produces numbers between 0.0 and 0.99999999999999978, that // is, between 0.0 and 1.0-DBL_EPSILON. // rand48Next (state); union {double d; Int64 i;} u; u.i = (Int64 (0x3ff) << 52) | // sign and exponent (Int64 (state[2]) << 36) | // significand (Int64 (state[1]) << 20) | (Int64 (state[0]) << 4) | (Int64 (state[2]) >> 12); return u.d - 1; } double drand48 () { return Imath::erand48 (staticState); } long int nrand48 (unsigned short state[3]) { // // Generate uniformly distributed integers between 0 and 0x7fffffff. // rand48Next (state); return ((long int) (state[2]) << 15) | ((long int) (state[1]) >> 1); } long int lrand48 () { return Imath::nrand48 (staticState); } void srand48 (long int seed) { staticState[2] = (unsigned short)(seed >> 16); staticState[1] = (unsigned short)(seed); staticState[0] = 0x330e; } float Rand32::nextf () { // // Generate single-precision floating-point values between 0.0 and 1.0: // // The exponent is set to 0x7f, which indicates a value greater than // or equal to 1.0, and less than 2.0. The 23 bits of the significand // (mantissa) are filled with pseudo-random bits generated by // Rand32::next(). This results in in bit patterns between 0x3f800000 // and 0x3fffffff, which correspond to uniformly distributed floating- // point values between 1.0 and 1.99999988. Subtracting 1.0 from // those values produces numbers between 0.0 and 0.99999988, that is, // between 0.0 and 1.0-FLT_EPSILON. // next (); union {float f; unsigned int i;} u; u.i = 0x3f800000 | (_state & 0x7fffff); return u.f - 1; } } // namespace Imath