/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include // EXPECT_MAT_NEAR #include "../src/fisheye.hpp" #include "opencv2/videoio.hpp" namespace opencv_test { namespace { class fisheyeTest : public ::testing::Test { protected: const static cv::Size imageSize; const static cv::Matx33d K; const static cv::Vec4d D; const static cv::Matx33d R; const static cv::Vec3d T; std::string datasets_repository_path; virtual void SetUp() { datasets_repository_path = combine(cvtest::TS::ptr()->get_data_path(), "cv/cameracalibration/fisheye"); } protected: std::string combine(const std::string& _item1, const std::string& _item2); }; const cv::Size fisheyeTest::imageSize(1280, 800); const cv::Matx33d fisheyeTest::K(558.478087865323, 0, 620.458515360843, 0, 560.506767351568, 381.939424848348, 0, 0, 1); const cv::Vec4d fisheyeTest::D(-0.0014613319981768, -0.00329861110580401, 0.00605760088590183, -0.00374209380722371); const cv::Matx33d fisheyeTest::R ( 9.9756700084424932e-01, 6.9698277640183867e-02, 1.4929569991321144e-03, -6.9711825162322980e-02, 9.9748249845531767e-01, 1.2997180766418455e-02, -5.8331736398316541e-04,-1.3069635393884985e-02, 9.9991441852366736e-01); const cv::Vec3d fisheyeTest::T(-9.9217369356044638e-02, 3.1741831972356663e-03, 1.8551007952921010e-04); std::string fisheyeTest::combine(const std::string& _item1, const std::string& _item2) { std::string item1 = _item1, item2 = _item2; std::replace(item1.begin(), item1.end(), '\\', '/'); std::replace(item2.begin(), item2.end(), '\\', '/'); if (item1.empty()) return item2; if (item2.empty()) return item1; char last = item1[item1.size()-1]; return item1 + (last != '/' ? "/" : "") + item2; } TEST_F(fisheyeTest, Calibration) { const int n_images = 34; const cv::Matx33d goldK(558.4780870585967, 0, 620.4585053962692, 0, 560.5067667343917, 381.9394122875291, 0, 0, 1); const cv::Vec4d goldD(-0.00146136, -0.00329847, 0.00605742, -0.00374201); std::vector > imagePoints(n_images); std::vector > objectPoints(n_images); const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY"); cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); CV_Assert(fs_left.isOpened()); for(int i = 0; i < n_images; ++i) fs_left[cv::format("image_%d", i )] >> imagePoints[i]; fs_left.release(); cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); CV_Assert(fs_object.isOpened()); for(int i = 0; i < n_images; ++i) fs_object[cv::format("image_%d", i )] >> objectPoints[i]; fs_object.release(); int flag = 0; flag |= cv::CALIB_RECOMPUTE_EXTRINSIC; flag |= cv::CALIB_CHECK_COND; flag |= cv::CALIB_FIX_SKEW; cv::Matx33d theK; cv::Vec4d theD; cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD, cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6)); EXPECT_MAT_NEAR(theK, goldK, 1e-8); EXPECT_MAT_NEAR(theD, goldD, 1e-8); } TEST_F(fisheyeTest, CalibrationWithFixedFocalLength) { const int n_images = 34; std::vector > imagePoints(n_images); std::vector > objectPoints(n_images); const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY"); cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); CV_Assert(fs_left.isOpened()); for(int i = 0; i < n_images; ++i) fs_left[cv::format("image_%d", i )] >> imagePoints[i]; fs_left.release(); cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); CV_Assert(fs_object.isOpened()); for(int i = 0; i < n_images; ++i) fs_object[cv::format("image_%d", i )] >> objectPoints[i]; fs_object.release(); int flag = 0; flag |= cv::CALIB_RECOMPUTE_EXTRINSIC; flag |= cv::CALIB_CHECK_COND; flag |= cv::CALIB_FIX_SKEW; flag |= cv::CALIB_FIX_FOCAL_LENGTH; flag |= cv::CALIB_USE_INTRINSIC_GUESS; cv::Matx33d theK = this->K; const cv::Matx33d newK( 558.478088, 0.000000, 620.458461, 0.000000, 560.506767, 381.939362, 0.000000, 0.000000, 1.000000); cv::Vec4d theD; const cv::Vec4d newD(-0.001461, -0.003298, 0.006057, -0.003742); cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD, cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6)); // ensure that CALIB_FIX_FOCAL_LENGTH works and focal lenght has not changed EXPECT_EQ(theK(0,0), K(0,0)); EXPECT_EQ(theK(1,1), K(1,1)); EXPECT_MAT_NEAR(theK, newK, 1e-6); EXPECT_MAT_NEAR(theD, newD, 1e-6); } TEST_F(fisheyeTest, Homography) { const int n_images = 1; std::vector > imagePoints(n_images); std::vector > objectPoints(n_images); const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY"); cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); CV_Assert(fs_left.isOpened()); for(int i = 0; i < n_images; ++i) fs_left[cv::format("image_%d", i )] >> imagePoints[i]; fs_left.release(); cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); CV_Assert(fs_object.isOpened()); for(int i = 0; i < n_images; ++i) fs_object[cv::format("image_%d", i )] >> objectPoints[i]; fs_object.release(); cv::internal::IntrinsicParams param; param.Init(cv::Vec2d(cv::max(imageSize.width, imageSize.height) / CV_PI, cv::max(imageSize.width, imageSize.height) / CV_PI), cv::Vec2d(imageSize.width / 2.0 - 0.5, imageSize.height / 2.0 - 0.5)); cv::Mat _imagePoints (imagePoints[0]); cv::Mat _objectPoints(objectPoints[0]); cv::Mat imagePointsNormalized = NormalizePixels(_imagePoints, param).reshape(1).t(); _objectPoints = _objectPoints.reshape(1, (int)_objectPoints.total()).t(); cv::Mat objectPointsMean, covObjectPoints; int Np = imagePointsNormalized.cols; cv::calcCovarMatrix(_objectPoints, covObjectPoints, objectPointsMean, cv::COVAR_NORMAL | cv::COVAR_COLS); cv::SVD svd(covObjectPoints); cv::Mat theR(svd.vt); if (cv::norm(theR(cv::Rect(2, 0, 1, 2))) < 1e-6) theR = cv::Mat::eye(3,3, CV_64FC1); if (cv::determinant(theR) < 0) theR = -theR; cv::Mat theT = -theR * objectPointsMean; cv::Mat X_new = theR * _objectPoints + theT * cv::Mat::ones(1, Np, CV_64FC1); cv::Mat H = cv::internal::ComputeHomography(imagePointsNormalized, X_new.rowRange(0, 2)); cv::Mat M = cv::Mat::ones(3, X_new.cols, CV_64FC1); X_new.rowRange(0, 2).copyTo(M.rowRange(0, 2)); cv::Mat mrep = H * M; cv::divide(mrep, cv::Mat::ones(3,1, CV_64FC1) * mrep.row(2).clone(), mrep); cv::Mat merr = (mrep.rowRange(0, 2) - imagePointsNormalized).t(); cv::Vec2d std_err; cv::meanStdDev(merr.reshape(2), cv::noArray(), std_err); std_err *= sqrt((double)merr.reshape(2).total() / (merr.reshape(2).total() - 1)); cv::Vec2d correct_std_err(0.00516740156010384, 0.00644205331553901); EXPECT_MAT_NEAR(std_err, correct_std_err, 1e-12); } TEST_F(fisheyeTest, EstimateUncertainties) { const int n_images = 34; std::vector > imagePoints(n_images); std::vector > objectPoints(n_images); const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY"); cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); CV_Assert(fs_left.isOpened()); for(int i = 0; i < n_images; ++i) fs_left[cv::format("image_%d", i )] >> imagePoints[i]; fs_left.release(); cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); CV_Assert(fs_object.isOpened()); for(int i = 0; i < n_images; ++i) fs_object[cv::format("image_%d", i )] >> objectPoints[i]; fs_object.release(); int flag = 0; flag |= cv::CALIB_RECOMPUTE_EXTRINSIC; flag |= cv::CALIB_CHECK_COND; flag |= cv::CALIB_FIX_SKEW; cv::Matx33d theK; cv::Vec4d theD; std::vector rvec; std::vector tvec; cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD, rvec, tvec, flag, cv::TermCriteria(3, 20, 1e-6)); cv::internal::IntrinsicParams param, errors; cv::Vec2d err_std; double thresh_cond = 1e6; int check_cond = 1; param.Init(cv::Vec2d(theK(0,0), theK(1,1)), cv::Vec2d(theK(0,2), theK(1, 2)), theD); param.isEstimate = std::vector(9, 1); param.isEstimate[4] = 0; errors.isEstimate = param.isEstimate; double rms; cv::internal::EstimateUncertainties(objectPoints, imagePoints, param, rvec, tvec, errors, err_std, thresh_cond, check_cond, rms); EXPECT_MAT_NEAR(errors.f, cv::Vec2d(1.34250246865020720, 1.36037536429654530), 1e-6); EXPECT_MAT_NEAR(errors.c, cv::Vec2d(0.92070526160049848, 0.84383585812851514), 1e-6); EXPECT_MAT_NEAR(errors.k, cv::Vec4d(0.0053379581373996041, 0.017389792901700545, 0.022036256089491224, 0.0094714594258908952), 1e-7); EXPECT_MAT_NEAR(err_std, cv::Vec2d(0.187475975266883, 0.185678953263995), 1e-7); CV_Assert(fabs(rms - 0.263782587133546) < 1e-10); CV_Assert(errors.alpha == 0); } TEST_F(fisheyeTest, stereoCalibrate) { const int n_images = 34; const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY"); std::vector > leftPoints(n_images); std::vector > rightPoints(n_images); std::vector > objectPoints(n_images); cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); CV_Assert(fs_left.isOpened()); for(int i = 0; i < n_images; ++i) fs_left[cv::format("image_%d", i )] >> leftPoints[i]; fs_left.release(); cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ); CV_Assert(fs_right.isOpened()); for(int i = 0; i < n_images; ++i) fs_right[cv::format("image_%d", i )] >> rightPoints[i]; fs_right.release(); cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); CV_Assert(fs_object.isOpened()); for(int i = 0; i < n_images; ++i) fs_object[cv::format("image_%d", i )] >> objectPoints[i]; fs_object.release(); cv::Matx33d K1, K2, theR; cv::Vec3d theT; cv::Vec4d D1, D2; int flag = 0; flag |= cv::CALIB_RECOMPUTE_EXTRINSIC; flag |= cv::CALIB_CHECK_COND; flag |= cv::CALIB_FIX_SKEW; cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints, K1, D1, K2, D2, imageSize, theR, theT, flag, cv::TermCriteria(3, 12, 0)); cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523, -0.06956823121068059, 0.9975601387249519, 0.005833595226966235, -0.006071257768382089, -0.006271040135405457, 0.9999619062167968); cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699); cv::Matx33d K1_correct (561.195925927249, 0, 621.282400272412, 0, 562.849402029712, 380.555455380889, 0, 0, 1); cv::Matx33d K2_correct (560.395452535348, 0, 678.971652040359, 0, 561.90171021422, 380.401340535339, 0, 0, 1); cv::Vec4d D1_correct (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771); cv::Vec4d D2_correct (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222); EXPECT_MAT_NEAR(theR, R_correct, 1e-10); EXPECT_MAT_NEAR(theT, T_correct, 1e-10); EXPECT_MAT_NEAR(K1, K1_correct, 1e-10); EXPECT_MAT_NEAR(K2, K2_correct, 1e-10); EXPECT_MAT_NEAR(D1, D1_correct, 1e-10); EXPECT_MAT_NEAR(D2, D2_correct, 1e-10); } TEST_F(fisheyeTest, stereoCalibrateFixIntrinsic) { const int n_images = 34; const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY"); std::vector > leftPoints(n_images); std::vector > rightPoints(n_images); std::vector > objectPoints(n_images); cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); CV_Assert(fs_left.isOpened()); for(int i = 0; i < n_images; ++i) fs_left[cv::format("image_%d", i )] >> leftPoints[i]; fs_left.release(); cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ); CV_Assert(fs_right.isOpened()); for(int i = 0; i < n_images; ++i) fs_right[cv::format("image_%d", i )] >> rightPoints[i]; fs_right.release(); cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); CV_Assert(fs_object.isOpened()); for(int i = 0; i < n_images; ++i) fs_object[cv::format("image_%d", i )] >> objectPoints[i]; fs_object.release(); cv::Matx33d theR; cv::Vec3d theT; int flag = 0; flag |= cv::CALIB_RECOMPUTE_EXTRINSIC; flag |= cv::CALIB_CHECK_COND; flag |= cv::CALIB_FIX_SKEW; flag |= cv::CALIB_FIX_INTRINSIC; cv::Matx33d K1 (561.195925927249, 0, 621.282400272412, 0, 562.849402029712, 380.555455380889, 0, 0, 1); cv::Matx33d K2 (560.395452535348, 0, 678.971652040359, 0, 561.90171021422, 380.401340535339, 0, 0, 1); cv::Vec4d D1 (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771); cv::Vec4d D2 (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222); cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints, K1, D1, K2, D2, imageSize, theR, theT, flag, cv::TermCriteria(3, 12, 0)); cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523, -0.06956823121068059, 0.9975601387249519, 0.005833595226966235, -0.006071257768382089, -0.006271040135405457, 0.9999619062167968); cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699); EXPECT_MAT_NEAR(theR, R_correct, 1e-10); EXPECT_MAT_NEAR(theT, T_correct, 1e-10); } TEST_F(fisheyeTest, CalibrationWithDifferentPointsNumber) { const int n_images = 2; std::vector > imagePoints(n_images); std::vector > objectPoints(n_images); std::vector imgPoints1(10); std::vector imgPoints2(15); std::vector objectPoints1(imgPoints1.size()); std::vector objectPoints2(imgPoints2.size()); for (size_t i = 0; i < imgPoints1.size(); i++) { imgPoints1[i] = cv::Point2d((double)i, (double)i); objectPoints1[i] = cv::Point3d((double)i, (double)i, 10.0); } for (size_t i = 0; i < imgPoints2.size(); i++) { imgPoints2[i] = cv::Point2d(i + 0.5, i + 0.5); objectPoints2[i] = cv::Point3d(i + 0.5, i + 0.5, 10.0); } imagePoints[0] = imgPoints1; imagePoints[1] = imgPoints2; objectPoints[0] = objectPoints1; objectPoints[1] = objectPoints2; cv::Matx33d theK = cv::Matx33d::eye(); cv::Vec4d theD; int flag = 0; flag |= cv::CALIB_RECOMPUTE_EXTRINSIC; flag |= cv::CALIB_USE_INTRINSIC_GUESS; flag |= cv::CALIB_FIX_SKEW; cv::fisheye::calibrate(objectPoints, imagePoints, cv::Size(100, 100), theK, theD, cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6)); } TEST_F(fisheyeTest, stereoCalibrateWithPerViewTransformations) { const int n_images = 34; const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY"); std::vector > leftPoints(n_images); std::vector > rightPoints(n_images); std::vector > objectPoints(n_images); cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); CV_Assert(fs_left.isOpened()); for(int i = 0; i < n_images; ++i) fs_left[cv::format("image_%d", i )] >> leftPoints[i]; fs_left.release(); cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ); CV_Assert(fs_right.isOpened()); for(int i = 0; i < n_images; ++i) fs_right[cv::format("image_%d", i )] >> rightPoints[i]; fs_right.release(); cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); CV_Assert(fs_object.isOpened()); for(int i = 0; i < n_images; ++i) fs_object[cv::format("image_%d", i )] >> objectPoints[i]; fs_object.release(); cv::Matx33d K1, K2, theR; cv::Vec3d theT; cv::Vec4d D1, D2; std::vector rvecs, tvecs; int flag = 0; flag |= cv::CALIB_RECOMPUTE_EXTRINSIC; flag |= cv::CALIB_CHECK_COND; flag |= cv::CALIB_FIX_SKEW; double rmsErrorStereoCalib = cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints, K1, D1, K2, D2, imageSize, theR, theT, rvecs, tvecs, flag, cv::TermCriteria(3, 12, 0)); std::vector reprojectedImgPts[2] = { std::vector(n_images), std::vector(n_images) }; size_t totalPoints = 0; double totalMSError[2] = { 0, 0 }; for( size_t i = 0; i < n_images; i++ ) { cv::Matx33d viewRotMat1, viewRotMat2; cv::Vec3d viewT1, viewT2; cv::Mat rVec; cv::Rodrigues( rvecs[i], rVec ); rVec.convertTo(viewRotMat1, CV_64F); tvecs[i].convertTo(viewT1, CV_64F); viewRotMat2 = theR * viewRotMat1; cv::Vec3d T2t = theR * viewT1; viewT2 = T2t + theT; cv::Vec3d viewRotVec1, viewRotVec2; cv::Rodrigues(viewRotMat1, viewRotVec1); cv::Rodrigues(viewRotMat2, viewRotVec2); double alpha1 = K1(0, 1) / K1(0, 0); double alpha2 = K2(0, 1) / K2(0, 0); cv::fisheye::projectPoints(objectPoints[i], reprojectedImgPts[0], viewRotVec1, viewT1, K1, D1, alpha1); cv::fisheye::projectPoints(objectPoints[i], reprojectedImgPts[1], viewRotVec2, viewT2, K2, D2, alpha2); double viewMSError[2] = { cv::norm(leftPoints[i], reprojectedImgPts[0], cv::NORM_L2SQR), cv::norm(rightPoints[i], reprojectedImgPts[1], cv::NORM_L2SQR) }; size_t n = objectPoints[i].size(); totalMSError[0] += viewMSError[0]; totalMSError[1] += viewMSError[1]; totalPoints += n; } double rmsErrorFromReprojectedImgPts = std::sqrt((totalMSError[0] + totalMSError[1]) / (2 * totalPoints)); cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523, -0.06956823121068059, 0.9975601387249519, 0.005833595226966235, -0.006071257768382089, -0.006271040135405457, 0.9999619062167968); cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699); cv::Matx33d K1_correct (561.195925927249, 0, 621.282400272412, 0, 562.849402029712, 380.555455380889, 0, 0, 1); cv::Matx33d K2_correct (560.395452535348, 0, 678.971652040359, 0, 561.90171021422, 380.401340535339, 0, 0, 1); cv::Vec4d D1_correct (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771); cv::Vec4d D2_correct (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222); EXPECT_MAT_NEAR(theR, R_correct, 1e-10); EXPECT_MAT_NEAR(theT, T_correct, 1e-10); EXPECT_MAT_NEAR(K1, K1_correct, 1e-10); EXPECT_MAT_NEAR(K2, K2_correct, 1e-10); EXPECT_MAT_NEAR(D1, D1_correct, 1e-10); EXPECT_MAT_NEAR(D2, D2_correct, 1e-10); EXPECT_NEAR(rmsErrorStereoCalib, rmsErrorFromReprojectedImgPts, 1e-4); } TEST_F(fisheyeTest, multiview_calibration) { const int n_images = 34; const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY"); std::vector > leftPoints(n_images); std::vector > rightPoints(n_images); std::vector > objectPoints(n_images); cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); CV_Assert(fs_left.isOpened()); for(int i = 0; i < n_images; ++i) fs_left[cv::format("image_%d", i )] >> leftPoints[i]; fs_left.release(); cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ); CV_Assert(fs_right.isOpened()); for(int i = 0; i < n_images; ++i) fs_right[cv::format("image_%d", i )] >> rightPoints[i]; fs_right.release(); cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); CV_Assert(fs_object.isOpened()); for(int i = 0; i < n_images; ++i) fs_object[cv::format("image_%d", i )] >> objectPoints[i]; fs_object.release(); std::vector> image_points_all(2, std::vector(leftPoints.size())); for (int i = 0; i < (int)leftPoints.size(); i++) { cv::Mat left_pts(leftPoints[i], false) , right_pts(rightPoints[i], false); left_pts.copyTo(image_points_all[0][i]); right_pts.copyTo(image_points_all[1][i]); } std::vector image_sizes(2, imageSize); cv::Mat visibility_mat = cv::Mat_::ones(2, (int)leftPoints.size()), errors_mat, output_pairs; std::vector Rs, Ts, Ks, distortions, rvecs0, tvecs0; std::vector is_fisheye(2, true); int flag = 0; flag |= cv::CALIB_RECOMPUTE_EXTRINSIC; flag |= cv::CALIB_CHECK_COND; flag |= cv::CALIB_FIX_SKEW; std::vector all_flags(2, flag); calibrateMultiview (objectPoints, image_points_all, image_sizes, visibility_mat, Rs, Ts, Ks, distortions, rvecs0, tvecs0, is_fisheye, errors_mat, output_pairs, false, all_flags); cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523, -0.06956823121068059, 0.9975601387249519, 0.005833595226966235, -0.006071257768382089, -0.006271040135405457, 0.9999619062167968); cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699); cv::Matx33d K1_correct (561.195925927249, 0, 621.282400272412, 0, 562.849402029712, 380.555455380889, 0, 0, 1); cv::Matx33d K2_correct (560.395452535348, 0, 678.971652040359, 0, 561.90171021422, 380.401340535339, 0, 0, 1); cv::Vec4d D1_correct (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771); cv::Vec4d D2_correct (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222); cv::Mat theR; cv::Rodrigues(Rs[1], theR); EXPECT_MAT_NEAR(theR, R_correct, 1e-2); EXPECT_MAT_NEAR(Ts[1], T_correct, 5e-3); EXPECT_MAT_NEAR(Ks[0], K1_correct, 4); EXPECT_MAT_NEAR(Ks[1], K2_correct, 5); EXPECT_MAT_NEAR(distortions[0], D1_correct, 1e-2); EXPECT_MAT_NEAR(distortions[1], D2_correct, 5e-2); } TEST_F(fisheyeTest, cameraRegistrationWithPerViewTransformations) { const int n_images = 34; const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY"); std::vector > leftPoints(n_images); std::vector > rightPoints(n_images); std::vector > objectPoints(n_images); cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); CV_Assert(fs_left.isOpened()); for(int i = 0; i < n_images; ++i) fs_left[cv::format("image_%d", i )] >> leftPoints[i]; fs_left.release(); cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ); CV_Assert(fs_right.isOpened()); for(int i = 0; i < n_images; ++i) fs_right[cv::format("image_%d", i )] >> rightPoints[i]; fs_right.release(); cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); CV_Assert(fs_object.isOpened()); for(int i = 0; i < n_images; ++i) fs_object[cv::format("image_%d", i )] >> objectPoints[i]; fs_object.release(); cv::Matx33d K1, K2, theR; cv::Vec3d theT; cv::Vec4d D1, D2; int flag = 0; flag |= cv::CALIB_RECOMPUTE_EXTRINSIC; flag |= cv::CALIB_CHECK_COND; flag |= cv::CALIB_FIX_SKEW; cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints, K1, D1, K2, D2, imageSize, theR, theT,flag, cv::TermCriteria(3, 12, 0)); cv::Mat E, F, perViewErrors; std::vector rvecs, tvecs; flag = 0; double rmsErrorRegisterCamera = cv::registerCameras(objectPoints, objectPoints, leftPoints, rightPoints, K1, D1, CALIB_MODEL_FISHEYE, K2, D2, CALIB_MODEL_FISHEYE, theR, theT, E, F, rvecs, tvecs, perViewErrors, flag, cv::TermCriteria(3, 12, 0)); std::vector reprojectedImgPts[2] = { std::vector(n_images), std::vector(n_images) }; size_t totalPoints = 0; double totalMSError[2] = { 0, 0 }; for( size_t i = 0; i < n_images; i++ ) { cv::Matx33d viewRotMat1, viewRotMat2; cv::Vec3d viewT1, viewT2; cv::Mat rVec; cv::Rodrigues( rvecs[i], rVec ); rVec.convertTo(viewRotMat1, CV_64F); tvecs[i].convertTo(viewT1, CV_64F); viewRotMat2 = theR * viewRotMat1; cv::Vec3d T2t = theR * viewT1; viewT2 = T2t + theT; cv::Vec3d viewRotVec1, viewRotVec2; cv::Rodrigues(viewRotMat1, viewRotVec1); cv::Rodrigues(viewRotMat2, viewRotVec2); double alpha1 = K1(0, 1) / K1(0, 0); double alpha2 = K2(0, 1) / K2(0, 0); cv::fisheye::projectPoints(objectPoints[i], reprojectedImgPts[0], viewRotVec1, viewT1, K1, D1, alpha1); cv::fisheye::projectPoints(objectPoints[i], reprojectedImgPts[1], viewRotVec2, viewT2, K2, D2, alpha2); double viewMSError[2] = { cv::norm(leftPoints[i], reprojectedImgPts[0], cv::NORM_L2SQR), cv::norm(rightPoints[i], reprojectedImgPts[1], cv::NORM_L2SQR) }; size_t n = objectPoints[i].size(); totalMSError[0] += viewMSError[0]; totalMSError[1] += viewMSError[1]; totalPoints += n; } double rmsErrorFromReprojectedImgPts = std::sqrt((totalMSError[0] + totalMSError[1]) / (2 * totalPoints)); cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523, -0.06956823121068059, 0.9975601387249519, 0.005833595226966235, -0.006071257768382089, -0.006271040135405457, 0.9999619062167968); cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699); cv::Matx33d K1_correct (561.195925927249, 0, 621.282400272412, 0, 562.849402029712, 380.555455380889, 0, 0, 1); cv::Matx33d K2_correct (560.395452535348, 0, 678.971652040359, 0, 561.90171021422, 380.401340535339, 0, 0, 1); cv::Vec4d D1_correct (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771); cv::Vec4d D2_correct (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222); EXPECT_MAT_NEAR(theR, R_correct, 1e-6); EXPECT_MAT_NEAR(theT, T_correct, 1e-6); EXPECT_MAT_NEAR(K1, K1_correct, 1e-4); EXPECT_MAT_NEAR(K2, K2_correct, 1e-4); EXPECT_MAT_NEAR(D1, D1_correct, 1e-5); EXPECT_MAT_NEAR(D2, D2_correct, 1e-5); EXPECT_NEAR(rmsErrorRegisterCamera, rmsErrorFromReprojectedImgPts, 1e-4); } }} // namespace