/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" using namespace cv; using namespace std; CV_AMLTest::CV_AMLTest( const char* _modelName ) : CV_MLBaseTest( _modelName ) { validationFN = "avalidation.xml"; } int CV_AMLTest::run_test_case( int testCaseIdx ) { int code = cvtest::TS::OK; code = prepare_test_case( testCaseIdx ); if (code == cvtest::TS::OK) { //#define GET_STAT #ifdef GET_STAT const char* data_name = ((CvFileNode*)cvGetSeqElem( dataSetNames, testCaseIdx ))->data.str.ptr; printf("%s, %s ", name, data_name); const int icount = 100; float res[icount]; for (int k = 0; k < icount; k++) { #endif data->shuffleTrainTest(); code = train( testCaseIdx ); #ifdef GET_STAT float case_result = get_error(); res[k] = case_result; } float mean = 0, sigma = 0; for (int k = 0; k < icount; k++) { mean += res[k]; } mean = mean /icount; for (int k = 0; k < icount; k++) { sigma += (res[k] - mean)*(res[k] - mean); } sigma = sqrt(sigma/icount); printf("%f, %f\n", mean, sigma); #endif } return code; } int CV_AMLTest::validate_test_results( int testCaseIdx ) { int iters; float mean, sigma; // read validation params FileNode resultNode = validationFS.getFirstTopLevelNode()["validation"][modelName][dataSetNames[testCaseIdx]]["result"]; resultNode["iter_count"] >> iters; if ( iters > 0) { resultNode["mean"] >> mean; resultNode["sigma"] >> sigma; model->save(format("/Users/vp/tmp/dtree/testcase_%02d.cur.yml", testCaseIdx)); float curErr = get_test_error( testCaseIdx ); const int coeff = 4; ts->printf( cvtest::TS::LOG, "Test case = %d; test error = %f; mean error = %f (diff=%f), %d*sigma = %f\n", testCaseIdx, curErr, mean, abs( curErr - mean), coeff, coeff*sigma ); if ( abs( curErr - mean) > coeff*sigma ) { ts->printf( cvtest::TS::LOG, "abs(%f - %f) > %f - OUT OF RANGE!\n", curErr, mean, coeff*sigma, coeff ); return cvtest::TS::FAIL_BAD_ACCURACY; } else ts->printf( cvtest::TS::LOG, ".\n" ); } else { ts->printf( cvtest::TS::LOG, "validation info is not suitable" ); return cvtest::TS::FAIL_INVALID_TEST_DATA; } return cvtest::TS::OK; } TEST(ML_DTree, regression) { CV_AMLTest test( CV_DTREE ); test.safe_run(); } TEST(ML_Boost, regression) { CV_AMLTest test( CV_BOOST ); test.safe_run(); } TEST(ML_RTrees, regression) { CV_AMLTest test( CV_RTREES ); test.safe_run(); } TEST(DISABLED_ML_ERTrees, regression) { CV_AMLTest test( CV_ERTREES ); test.safe_run(); } TEST(ML_NBAYES, regression_5911) { int N=12; Ptr nb = cv::ml::NormalBayesClassifier::create(); // data: Mat_ X(N,4); X << 1,2,3,4, 1,2,3,4, 1,2,3,4, 1,2,3,4, 5,5,5,5, 5,5,5,5, 5,5,5,5, 5,5,5,5, 4,3,2,1, 4,3,2,1, 4,3,2,1, 4,3,2,1; // labels: Mat_ Y(N,1); Y << 0,0,0,0, 1,1,1,1, 2,2,2,2; nb->train(X, ml::ROW_SAMPLE, Y); // single prediction: Mat R1,P1; for (int i=0; ipredictProb(X.row(i), r, p); R1.push_back(r); P1.push_back(p); } // bulk prediction (continuous memory): Mat R2,P2; nb->predictProb(X, R2, P2); EXPECT_EQ(sum(R1 == R2)[0], 255 * R2.total()); EXPECT_EQ(sum(P1 == P2)[0], 255 * P2.total()); // bulk prediction, with non-continuous memory storage Mat R3_(N, 1+1, CV_32S), P3_(N, 3+1, CV_32F); nb->predictProb(X, R3_.col(0), P3_.colRange(0,3)); Mat R3 = R3_.col(0).clone(), P3 = P3_.colRange(0,3).clone(); EXPECT_EQ(sum(R1 == R3)[0], 255 * R3.total()); EXPECT_EQ(sum(P1 == P3)[0], 255 * P3.total()); } TEST(ML_RTrees, getVotes) { int n = 12; int count, i; int label_size = 3; int predicted_class = 0; int max_votes = -1; int val; // RTrees for classification Ptr rt = cv::ml::RTrees::create(); //data Mat data(n, 4, CV_32F); randu(data, 0, 10); //labels Mat labels = (Mat_(n,1) << 0,0,0,0, 1,1,1,1, 2,2,2,2); rt->train(data, ml::ROW_SAMPLE, labels); //run function Mat test(1, 4, CV_32F); Mat result; randu(test, 0, 10); rt->getVotes(test, result, 0); //count vote amount and find highest vote count = 0; const int* result_row = result.ptr(1); for( i = 0; i < label_size; i++ ) { val = result_row[i]; //predicted_class = max_votes < val? i; if( max_votes < val ) { max_votes = val; predicted_class = i; } count += val; } EXPECT_EQ(count, (int)rt->getRoots().size()); EXPECT_EQ(result.at(0, predicted_class), rt->predict(test)); } /* End of file. */