/** @file warpPerspective_demo.cpp @brief a demo program shows how perspective transformation applied on an image @based on a sample code http://study.marearts.com/2015/03/image-warping-using-opencv.html @modified by Suleyman TURKMEN */ #include "opencv2/imgproc.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/highgui.hpp" #include "opencv2/calib3d.hpp" #include using namespace std; using namespace cv; static void help(char** argv) { // print a welcome message, and the OpenCV version cout << "\nThis is a demo program shows how perspective transformation applied on an image, \n" "Using OpenCV version " << CV_VERSION << endl; cout << "\nUsage:\n" << argv[0] << " [image_name -- Default right.jpg]\n" << endl; cout << "\nHot keys: \n" "\tESC, q - quit the program\n" "\tr - change order of points to rotate transformation\n" "\tc - delete selected points\n" "\ti - change order of points to inverse transformation \n" "\nUse your mouse to select a point and move it to see transformation changes" << endl; } static void onMouse(int event, int x, int y, int, void*); Mat warping(Mat image, Size warped_image_size, vector< Point2f> srcPoints, vector< Point2f> dstPoints); String windowTitle = "Perspective Transformation Demo"; String labels[4] = { "TL","TR","BR","BL" }; vector< Point2f> roi_corners; vector< Point2f> dst_corners(4); int roiIndex = 0; bool dragging; int selected_corner_index = 0; bool validation_needed = true; int main(int argc, char** argv) { help(argv); CommandLineParser parser(argc, argv, "{@input| right.jpg |}"); string filename = samples::findFile(parser.get("@input")); Mat original_image = imread( filename ); Mat image; float original_image_cols = (float)original_image.cols; float original_image_rows = (float)original_image.rows; roi_corners.push_back(Point2f( (float)(original_image_cols / 1.70), (float)(original_image_rows / 4.20) )); roi_corners.push_back(Point2f( (float)(original_image.cols / 1.15), (float)(original_image.rows / 3.32) )); roi_corners.push_back(Point2f( (float)(original_image.cols / 1.33), (float)(original_image.rows / 1.10) )); roi_corners.push_back(Point2f( (float)(original_image.cols / 1.93), (float)(original_image.rows / 1.36) )); namedWindow(windowTitle, WINDOW_NORMAL); namedWindow("Warped Image", WINDOW_AUTOSIZE); moveWindow("Warped Image", 20, 20); moveWindow(windowTitle, 330, 20); setMouseCallback(windowTitle, onMouse, 0); bool endProgram = false; while (!endProgram) { if ( validation_needed & (roi_corners.size() < 4) ) { validation_needed = false; image = original_image.clone(); for (size_t i = 0; i < roi_corners.size(); ++i) { circle( image, roi_corners[i], 5, Scalar(0, 255, 0), 3 ); if( i > 0 ) { line(image, roi_corners[i-1], roi_corners[(i)], Scalar(0, 0, 255), 2); circle(image, roi_corners[i], 5, Scalar(0, 255, 0), 3); putText(image, labels[i].c_str(), roi_corners[i], FONT_HERSHEY_SIMPLEX, 0.8, Scalar(255, 0, 0), 2); } } imshow( windowTitle, image ); } if ( validation_needed & ( roi_corners.size() == 4 )) { image = original_image.clone(); for ( int i = 0; i < 4; ++i ) { line(image, roi_corners[i], roi_corners[(i + 1) % 4], Scalar(0, 0, 255), 2); circle(image, roi_corners[i], 5, Scalar(0, 255, 0), 3); putText(image, labels[i].c_str(), roi_corners[i], FONT_HERSHEY_SIMPLEX, 0.8, Scalar(255, 0, 0), 2); } imshow( windowTitle, image ); dst_corners[0].x = 0; dst_corners[0].y = 0; dst_corners[1].x = (float)std::max(norm(roi_corners[0] - roi_corners[1]), norm(roi_corners[2] - roi_corners[3])); dst_corners[1].y = 0; dst_corners[2].x = (float)std::max(norm(roi_corners[0] - roi_corners[1]), norm(roi_corners[2] - roi_corners[3])); dst_corners[2].y = (float)std::max(norm(roi_corners[1] - roi_corners[2]), norm(roi_corners[3] - roi_corners[0])); dst_corners[3].x = 0; dst_corners[3].y = (float)std::max(norm(roi_corners[1] - roi_corners[2]), norm(roi_corners[3] - roi_corners[0])); Size warped_image_size = Size(cvRound(dst_corners[2].x), cvRound(dst_corners[2].y)); Mat H = findHomography(roi_corners, dst_corners); //get homography Mat warped_image; warpPerspective(original_image, warped_image, H, warped_image_size); // do perspective transformation imshow("Warped Image", warped_image); } char c = (char)waitKey( 10 ); if ((c == 'q') | (c == 'Q') | (c == 27)) { endProgram = true; } if ((c == 'c') | (c == 'C')) { roi_corners.clear(); } if ((c == 'r') | (c == 'R')) { roi_corners.push_back(roi_corners[0]); roi_corners.erase(roi_corners.begin()); } if ((c == 'i') | (c == 'I')) { swap(roi_corners[0], roi_corners[1]); swap(roi_corners[2], roi_corners[3]); } } return 0; } static void onMouse(int event, int x, int y, int, void*) { // Action when left button is pressed if (roi_corners.size() == 4) { for (int i = 0; i < 4; ++i) { if ((event == EVENT_LBUTTONDOWN) & ((abs(roi_corners[i].x - x) < 10)) & (abs(roi_corners[i].y - y) < 10)) { selected_corner_index = i; dragging = true; } } } else if ( event == EVENT_LBUTTONDOWN ) { roi_corners.push_back( Point2f( (float) x, (float) y ) ); validation_needed = true; } // Action when left button is released if (event == EVENT_LBUTTONUP) { dragging = false; } // Action when left button is pressed and mouse has moved over the window if ((event == EVENT_MOUSEMOVE) && dragging) { roi_corners[selected_corner_index].x = (float) x; roi_corners[selected_corner_index].y = (float) y; validation_needed = true; } }