#include "opencv2/ml/ml.hpp" #include "opencv2/core/core_c.h" #include "opencv2/core/utility.hpp" #include #include static void help() { printf( "\nThis sample demonstrates how to use different decision trees and forests including boosting and random trees:\n" "CvDTree dtree;\n" "CvBoost boost;\n" "CvRTrees rtrees;\n" "CvERTrees ertrees;\n" "CvGBTrees gbtrees;\n" "Call:\n\t./tree_engine [-r ] [-c] \n" "where -r specified the 0-based index of the response (0 by default)\n" "-c specifies that the response is categorical (it's ordered by default) and\n" " is the name of training data file in comma-separated value format\n\n"); } static int count_classes(CvMLData& data) { cv::Mat r = cv::cvarrToMat(data.get_responses()); std::map rmap; int i, n = (int)r.total(); for( i = 0; i < n; i++ ) { float val = r.at(i); int ival = cvRound(val); if( ival != val ) return -1; rmap[ival] = 1; } return (int)rmap.size(); } static void print_result(float train_err, float test_err, const CvMat* _var_imp) { printf( "train error %f\n", train_err ); printf( "test error %f\n\n", test_err ); if (_var_imp) { cv::Mat var_imp = cv::cvarrToMat(_var_imp), sorted_idx; cv::sortIdx(var_imp, sorted_idx, CV_SORT_EVERY_ROW + CV_SORT_DESCENDING); printf( "variable importance:\n" ); int i, n = (int)var_imp.total(); int type = var_imp.type(); CV_Assert(type == CV_32F || type == CV_64F); for( i = 0; i < n; i++) { int k = sorted_idx.at(i); printf( "%d\t%f\n", k, type == CV_32F ? var_imp.at(k) : var_imp.at(k)); } } printf("\n"); } int main(int argc, char** argv) { if(argc < 2) { help(); return 0; } const char* filename = 0; int response_idx = 0; bool categorical_response = false; for(int i = 1; i < argc; i++) { if(strcmp(argv[i], "-r") == 0) sscanf(argv[++i], "%d", &response_idx); else if(strcmp(argv[i], "-c") == 0) categorical_response = true; else if(argv[i][0] != '-' ) filename = argv[i]; else { printf("Error. Invalid option %s\n", argv[i]); help(); return -1; } } printf("\nReading in %s...\n\n",filename); CvDTree dtree; CvBoost boost; CvRTrees rtrees; CvERTrees ertrees; CvGBTrees gbtrees; CvMLData data; CvTrainTestSplit spl( 0.5f ); if ( data.read_csv( filename ) == 0) { data.set_response_idx( response_idx ); if(categorical_response) data.change_var_type( response_idx, CV_VAR_CATEGORICAL ); data.set_train_test_split( &spl ); printf("======DTREE=====\n"); dtree.train( &data, CvDTreeParams( 10, 2, 0, false, 16, 0, false, false, 0 )); print_result( dtree.calc_error( &data, CV_TRAIN_ERROR), dtree.calc_error( &data, CV_TEST_ERROR ), dtree.get_var_importance() ); if( categorical_response && count_classes(data) == 2 ) { printf("======BOOST=====\n"); boost.train( &data, CvBoostParams(CvBoost::DISCRETE, 100, 0.95, 2, false, 0)); print_result( boost.calc_error( &data, CV_TRAIN_ERROR ), boost.calc_error( &data, CV_TEST_ERROR ), 0 ); //doesn't compute importance } printf("======RTREES=====\n"); rtrees.train( &data, CvRTParams( 10, 2, 0, false, 16, 0, true, 0, 100, 0, CV_TERMCRIT_ITER )); print_result( rtrees.calc_error( &data, CV_TRAIN_ERROR), rtrees.calc_error( &data, CV_TEST_ERROR ), rtrees.get_var_importance() ); printf("======ERTREES=====\n"); ertrees.train( &data, CvRTParams( 18, 2, 0, false, 16, 0, true, 0, 100, 0, CV_TERMCRIT_ITER )); print_result( ertrees.calc_error( &data, CV_TRAIN_ERROR), ertrees.calc_error( &data, CV_TEST_ERROR ), ertrees.get_var_importance() ); printf("======GBTREES=====\n"); if (categorical_response) gbtrees.train( &data, CvGBTreesParams(CvGBTrees::DEVIANCE_LOSS, 100, 0.1f, 0.8f, 5, false)); else gbtrees.train( &data, CvGBTreesParams(CvGBTrees::SQUARED_LOSS, 100, 0.1f, 0.8f, 5, false)); print_result( gbtrees.calc_error( &data, CV_TRAIN_ERROR), gbtrees.calc_error( &data, CV_TEST_ERROR ), 0 ); //doesn't compute importance } else printf("File can not be read"); return 0; }