#if defined(_MSC_VER) && (_MSC_VER >= 1800) // eliminating duplicated round() declaration #define HAVE_ROUND 1 #pragma warning(push) #pragma warning(disable:5033) // 'register' is no longer a supported storage class #endif #include #include #if defined(_MSC_VER) && (_MSC_VER >= 1800) #pragma warning(pop) #endif #define MODULESTR "cv2" #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION #include #if PY_MAJOR_VERSION >= 3 # define CV_PYTHON_TYPE_HEAD_INIT() PyVarObject_HEAD_INIT(&PyType_Type, 0) #else # define CV_PYTHON_TYPE_HEAD_INIT() PyObject_HEAD_INIT(&PyType_Type) 0, #endif #include "pyopencv_generated_include.h" #include "opencv2/core/types_c.h" #include "opencv2/opencv_modules.hpp" #include "pycompat.hpp" #include static PyObject* opencv_error = 0; static int failmsg(const char *fmt, ...) { char str[1000]; va_list ap; va_start(ap, fmt); vsnprintf(str, sizeof(str), fmt, ap); va_end(ap); PyErr_SetString(PyExc_TypeError, str); return 0; } struct ArgInfo { const char * name; bool outputarg; // more fields may be added if necessary ArgInfo(const char * name_, bool outputarg_) : name(name_) , outputarg(outputarg_) {} // to match with older pyopencv_to function signature operator const char *() const { return name; } }; class PyAllowThreads { public: PyAllowThreads() : _state(PyEval_SaveThread()) {} ~PyAllowThreads() { PyEval_RestoreThread(_state); } private: PyThreadState* _state; }; class PyEnsureGIL { public: PyEnsureGIL() : _state(PyGILState_Ensure()) {} ~PyEnsureGIL() { PyGILState_Release(_state); } private: PyGILState_STATE _state; }; #define ERRWRAP2(expr) \ try \ { \ PyAllowThreads allowThreads; \ expr; \ } \ catch (const cv::Exception &e) \ { \ PyErr_SetString(opencv_error, e.what()); \ return 0; \ } using namespace cv; typedef std::vector vector_uchar; typedef std::vector vector_char; typedef std::vector vector_int; typedef std::vector vector_float; typedef std::vector vector_double; typedef std::vector vector_size_t; typedef std::vector vector_Point; typedef std::vector vector_Point2f; typedef std::vector vector_Point3f; typedef std::vector vector_Vec2f; typedef std::vector vector_Vec3f; typedef std::vector vector_Vec4f; typedef std::vector vector_Vec6f; typedef std::vector vector_Vec4i; typedef std::vector vector_Rect; typedef std::vector vector_Rect2d; typedef std::vector vector_KeyPoint; typedef std::vector vector_Mat; typedef std::vector > vector_vector_Mat; typedef std::vector vector_UMat; typedef std::vector vector_DMatch; typedef std::vector vector_String; typedef std::vector vector_Scalar; typedef std::vector > vector_vector_char; typedef std::vector > vector_vector_Point; typedef std::vector > vector_vector_Point2f; typedef std::vector > vector_vector_Point3f; typedef std::vector > vector_vector_DMatch; typedef std::vector > vector_vector_KeyPoint; static PyObject* failmsgp(const char *fmt, ...) { char str[1000]; va_list ap; va_start(ap, fmt); vsnprintf(str, sizeof(str), fmt, ap); va_end(ap); PyErr_SetString(PyExc_TypeError, str); return 0; } class NumpyAllocator : public MatAllocator { public: NumpyAllocator() { stdAllocator = Mat::getStdAllocator(); } ~NumpyAllocator() {} UMatData* allocate(PyObject* o, int dims, const int* sizes, int type, size_t* step) const { UMatData* u = new UMatData(this); u->data = u->origdata = (uchar*)PyArray_DATA((PyArrayObject*) o); npy_intp* _strides = PyArray_STRIDES((PyArrayObject*) o); for( int i = 0; i < dims - 1; i++ ) step[i] = (size_t)_strides[i]; step[dims-1] = CV_ELEM_SIZE(type); u->size = sizes[0]*step[0]; u->userdata = o; return u; } UMatData* allocate(int dims0, const int* sizes, int type, void* data, size_t* step, int flags, UMatUsageFlags usageFlags) const CV_OVERRIDE { if( data != 0 ) { // issue #6969: CV_Error(Error::StsAssert, "The data should normally be NULL!"); // probably this is safe to do in such extreme case return stdAllocator->allocate(dims0, sizes, type, data, step, flags, usageFlags); } PyEnsureGIL gil; int depth = CV_MAT_DEPTH(type); int cn = CV_MAT_CN(type); const int f = (int)(sizeof(size_t)/8); int typenum = depth == CV_8U ? NPY_UBYTE : depth == CV_8S ? NPY_BYTE : depth == CV_16U ? NPY_USHORT : depth == CV_16S ? NPY_SHORT : depth == CV_32S ? NPY_INT : depth == CV_32F ? NPY_FLOAT : depth == CV_64F ? NPY_DOUBLE : f*NPY_ULONGLONG + (f^1)*NPY_UINT; int i, dims = dims0; cv::AutoBuffer _sizes(dims + 1); for( i = 0; i < dims; i++ ) _sizes[i] = sizes[i]; if( cn > 1 ) _sizes[dims++] = cn; PyObject* o = PyArray_SimpleNew(dims, _sizes, typenum); if(!o) CV_Error_(Error::StsError, ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims)); return allocate(o, dims0, sizes, type, step); } bool allocate(UMatData* u, int accessFlags, UMatUsageFlags usageFlags) const CV_OVERRIDE { return stdAllocator->allocate(u, accessFlags, usageFlags); } void deallocate(UMatData* u) const CV_OVERRIDE { if(!u) return; PyEnsureGIL gil; CV_Assert(u->urefcount >= 0); CV_Assert(u->refcount >= 0); if(u->refcount == 0) { PyObject* o = (PyObject*)u->userdata; Py_XDECREF(o); delete u; } } const MatAllocator* stdAllocator; }; NumpyAllocator g_numpyAllocator; template static bool pyopencv_to(PyObject* obj, T& p, const char* name = ""); template static PyObject* pyopencv_from(const T& src); enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 }; // special case, when the converter needs full ArgInfo structure static bool pyopencv_to(PyObject* o, Mat& m, const ArgInfo info) { bool allowND = true; if(!o || o == Py_None) { if( !m.data ) m.allocator = &g_numpyAllocator; return true; } if( PyInt_Check(o) ) { double v[] = {static_cast(PyInt_AsLong((PyObject*)o)), 0., 0., 0.}; m = Mat(4, 1, CV_64F, v).clone(); return true; } if( PyFloat_Check(o) ) { double v[] = {PyFloat_AsDouble((PyObject*)o), 0., 0., 0.}; m = Mat(4, 1, CV_64F, v).clone(); return true; } if( PyTuple_Check(o) ) { int i, sz = (int)PyTuple_Size((PyObject*)o); m = Mat(sz, 1, CV_64F); for( i = 0; i < sz; i++ ) { PyObject* oi = PyTuple_GET_ITEM(o, i); if( PyInt_Check(oi) ) m.at(i) = (double)PyInt_AsLong(oi); else if( PyFloat_Check(oi) ) m.at(i) = (double)PyFloat_AsDouble(oi); else { failmsg("%s is not a numerical tuple", info.name); m.release(); return false; } } return true; } if( !PyArray_Check(o) ) { failmsg("%s is not a numpy array, neither a scalar", info.name); return false; } PyArrayObject* oarr = (PyArrayObject*) o; bool needcopy = false, needcast = false; int typenum = PyArray_TYPE(oarr), new_typenum = typenum; int type = typenum == NPY_UBYTE ? CV_8U : typenum == NPY_BYTE ? CV_8S : typenum == NPY_USHORT ? CV_16U : typenum == NPY_SHORT ? CV_16S : typenum == NPY_INT ? CV_32S : typenum == NPY_INT32 ? CV_32S : typenum == NPY_FLOAT ? CV_32F : typenum == NPY_DOUBLE ? CV_64F : -1; if( type < 0 ) { if( typenum == NPY_INT64 || typenum == NPY_UINT64 || typenum == NPY_LONG ) { needcopy = needcast = true; new_typenum = NPY_INT; type = CV_32S; } else { failmsg("%s data type = %d is not supported", info.name, typenum); return false; } } #ifndef CV_MAX_DIM const int CV_MAX_DIM = 32; #endif int ndims = PyArray_NDIM(oarr); if(ndims >= CV_MAX_DIM) { failmsg("%s dimensionality (=%d) is too high", info.name, ndims); return false; } int size[CV_MAX_DIM+1]; size_t step[CV_MAX_DIM+1]; size_t elemsize = CV_ELEM_SIZE1(type); const npy_intp* _sizes = PyArray_DIMS(oarr); const npy_intp* _strides = PyArray_STRIDES(oarr); bool ismultichannel = ndims == 3 && _sizes[2] <= CV_CN_MAX; for( int i = ndims-1; i >= 0 && !needcopy; i-- ) { // these checks handle cases of // a) multi-dimensional (ndims > 2) arrays, as well as simpler 1- and 2-dimensional cases // b) transposed arrays, where _strides[] elements go in non-descending order // c) flipped arrays, where some of _strides[] elements are negative // the _sizes[i] > 1 is needed to avoid spurious copies when NPY_RELAXED_STRIDES is set if( (i == ndims-1 && _sizes[i] > 1 && (size_t)_strides[i] != elemsize) || (i < ndims-1 && _sizes[i] > 1 && _strides[i] < _strides[i+1]) ) needcopy = true; } if( ismultichannel && _strides[1] != (npy_intp)elemsize*_sizes[2] ) needcopy = true; if (needcopy) { if (info.outputarg) { failmsg("Layout of the output array %s is incompatible with cv::Mat (step[ndims-1] != elemsize or step[1] != elemsize*nchannels)", info.name); return false; } if( needcast ) { o = PyArray_Cast(oarr, new_typenum); oarr = (PyArrayObject*) o; } else { oarr = PyArray_GETCONTIGUOUS(oarr); o = (PyObject*) oarr; } _strides = PyArray_STRIDES(oarr); } // Normalize strides in case NPY_RELAXED_STRIDES is set size_t default_step = elemsize; for ( int i = ndims - 1; i >= 0; --i ) { size[i] = (int)_sizes[i]; if ( size[i] > 1 ) { step[i] = (size_t)_strides[i]; default_step = step[i] * size[i]; } else { step[i] = default_step; default_step *= size[i]; } } // handle degenerate case if( ndims == 0) { size[ndims] = 1; step[ndims] = elemsize; ndims++; } if( ismultichannel ) { ndims--; type |= CV_MAKETYPE(0, size[2]); } if( ndims > 2 && !allowND ) { failmsg("%s has more than 2 dimensions", info.name); return false; } m = Mat(ndims, size, type, PyArray_DATA(oarr), step); m.u = g_numpyAllocator.allocate(o, ndims, size, type, step); m.addref(); if( !needcopy ) { Py_INCREF(o); } m.allocator = &g_numpyAllocator; return true; } template<> bool pyopencv_to(PyObject* o, Mat& m, const char* name) { return pyopencv_to(o, m, ArgInfo(name, 0)); } template bool pyopencv_to(PyObject* o, Matx<_Tp, m, n>& mx, const ArgInfo info) { Mat tmp; if (!pyopencv_to(o, tmp, info)) { return false; } tmp.copyTo(mx); return true; } template bool pyopencv_to(PyObject* o, Matx<_Tp, m, n>& mx, const char* name) { return pyopencv_to(o, mx, ArgInfo(name, 0)); } template bool pyopencv_to(PyObject *o, Ptr& p, const char *name) { if (!o || o == Py_None) return true; p = makePtr(); return pyopencv_to(o, *p, name); } template<> PyObject* pyopencv_from(const Mat& m) { if( !m.data ) Py_RETURN_NONE; Mat temp, *p = (Mat*)&m; if(!p->u || p->allocator != &g_numpyAllocator) { temp.allocator = &g_numpyAllocator; ERRWRAP2(m.copyTo(temp)); p = &temp; } PyObject* o = (PyObject*)p->u->userdata; Py_INCREF(o); return o; } template PyObject* pyopencv_from(const Matx<_Tp, m, n>& matx) { return pyopencv_from(Mat(matx)); } template PyObject* pyopencv_from(const cv::Ptr& p) { if (!p) Py_RETURN_NONE; return pyopencv_from(*p); } typedef struct { PyObject_HEAD UMat* um; } cv2_UMatWrapperObject; static bool PyObject_IsUMat(PyObject *o); // UMatWrapper init - try to map arguments from python to UMat constructors static int UMatWrapper_init(cv2_UMatWrapperObject *self, PyObject *args, PyObject *kwds) { self->um = NULL; { // constructor () const char *kwlist[] = {NULL}; if (PyArg_ParseTupleAndKeywords(args, kwds, "", (char**) kwlist)) { self->um = new UMat(); return 0; } PyErr_Clear(); } { // constructor (rows, cols, type) const char *kwlist[] = {"rows", "cols", "type", NULL}; int rows, cols, type; if (PyArg_ParseTupleAndKeywords(args, kwds, "iii", (char**) kwlist, &rows, &cols, &type)) { self->um = new UMat(rows, cols, type); return 0; } PyErr_Clear(); } { // constructor (m, rowRange, colRange) const char *kwlist[] = {"m", "rowRange", "colRange", NULL}; PyObject *obj = NULL; int y0 = -1, y1 = -1, x0 = -1, x1 = -1; if (PyArg_ParseTupleAndKeywords(args, kwds, "O(ii)|(ii)", (char**) kwlist, &obj, &y0, &y1, &x0, &x1) && PyObject_IsUMat(obj)) { UMat *um_other = ((cv2_UMatWrapperObject *) obj)->um; Range rowRange(y0, y1); Range colRange = (x0 >= 0 && x1 >= 0) ? Range(x0, x1) : Range::all(); self->um = new UMat(*um_other, rowRange, colRange); return 0; } PyErr_Clear(); } { // constructor (m) const char *kwlist[] = {"m", NULL}; PyObject *obj = NULL; if (PyArg_ParseTupleAndKeywords(args, kwds, "O", (char**) kwlist, &obj)) { // constructor (UMat m) if (PyObject_IsUMat(obj)) { UMat *um_other = ((cv2_UMatWrapperObject *) obj)->um; self->um = new UMat(*um_other); return 0; } // python specific constructor from array like object Mat m; if (pyopencv_to(obj, m, ArgInfo("UMatWrapper.np_mat", 0))) { self->um = new UMat(); m.copyTo(*self->um); return 0; } } PyErr_Clear(); } PyErr_SetString(PyExc_TypeError, "no matching UMat constructor found/supported"); return -1; } static void UMatWrapper_dealloc(cv2_UMatWrapperObject* self) { if (self->um) delete self->um; #if PY_MAJOR_VERSION >= 3 Py_TYPE(self)->tp_free((PyObject*)self); #else self->ob_type->tp_free((PyObject*)self); #endif } // UMatWrapper.get() - returns numpy array by transferring UMat data to Mat and than wrapping it to numpy array // (using numpy allocator - and so without unnecessary copy) static PyObject * UMatWrapper_get(cv2_UMatWrapperObject* self) { Mat m; m.allocator = &g_numpyAllocator; self->um->copyTo(m); return pyopencv_from(m); } // UMatWrapper.handle() - returns the OpenCL handle of the UMat object static PyObject * UMatWrapper_handle(cv2_UMatWrapperObject* self, PyObject *args, PyObject *kwds) { const char *kwlist[] = {"accessFlags", NULL}; int accessFlags; if (!PyArg_ParseTupleAndKeywords(args, kwds, "i", (char**) kwlist, &accessFlags)) return 0; return PyLong_FromVoidPtr(self->um->handle(accessFlags)); } // UMatWrapper.isContinuous() - returns true if the matrix data is continuous static PyObject * UMatWrapper_isContinuous(cv2_UMatWrapperObject* self) { return PyBool_FromLong(self->um->isContinuous()); } // UMatWrapper.isContinuous() - returns true if the matrix is a submatrix of another matrix static PyObject * UMatWrapper_isSubmatrix(cv2_UMatWrapperObject* self) { return PyBool_FromLong(self->um->isSubmatrix()); } // UMatWrapper.context() - returns the OpenCL context used by OpenCV UMat static PyObject * UMatWrapper_context(cv2_UMatWrapperObject*) { return PyLong_FromVoidPtr(cv::ocl::Context::getDefault().ptr()); } // UMatWrapper.context() - returns the OpenCL queue used by OpenCV UMat static PyObject * UMatWrapper_queue(cv2_UMatWrapperObject*) { return PyLong_FromVoidPtr(cv::ocl::Queue::getDefault().ptr()); } static PyObject * UMatWrapper_offset_getter(cv2_UMatWrapperObject* self, void*) { return PyLong_FromSsize_t(self->um->offset); } static PyMethodDef UMatWrapper_methods[] = { {"get", (PyCFunction)UMatWrapper_get, METH_NOARGS, "Returns numpy array" }, {"handle", (PyCFunction)UMatWrapper_handle, METH_VARARGS | METH_KEYWORDS, "Returns UMat native handle" }, {"isContinuous", (PyCFunction)UMatWrapper_isContinuous, METH_NOARGS, "Returns true if the matrix data is continuous" }, {"isSubmatrix", (PyCFunction)UMatWrapper_isSubmatrix, METH_NOARGS, "Returns true if the matrix is a submatrix of another matrix" }, {"context", (PyCFunction)UMatWrapper_context, METH_NOARGS | METH_STATIC, "Returns OpenCL context handle" }, {"queue", (PyCFunction)UMatWrapper_queue, METH_NOARGS | METH_STATIC, "Returns OpenCL queue handle" }, {NULL, NULL, 0, NULL} /* Sentinel */ }; static PyGetSetDef UMatWrapper_getset[] = { {(char*) "offset", (getter) UMatWrapper_offset_getter, NULL, NULL, NULL}, {NULL, NULL, NULL, NULL, NULL} /* Sentinel */ }; static PyTypeObject cv2_UMatWrapperType = { #if PY_MAJOR_VERSION >= 3 PyVarObject_HEAD_INIT(NULL, 0) #else PyObject_HEAD_INIT(NULL) 0, /*ob_size*/ #endif "cv2.UMat", /* tp_name */ sizeof(cv2_UMatWrapperObject), /* tp_basicsize */ 0, /* tp_itemsize */ (destructor)UMatWrapper_dealloc, /* tp_dealloc */ 0, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_reserved */ 0, /* tp_repr */ 0, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ 0, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ 0, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT, /* tp_flags */ "OpenCV 3 UMat wrapper. Used for T-API support.", /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ UMatWrapper_methods, /* tp_methods */ 0, /* tp_members */ UMatWrapper_getset, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ (initproc)UMatWrapper_init, /* tp_init */ 0, /* tp_alloc */ PyType_GenericNew, /* tp_new */ 0, /* tp_free */ 0, /* tp_is_gc */ 0, /* tp_bases */ 0, /* tp_mro */ 0, /* tp_cache */ 0, /* tp_subclasses */ 0, /* tp_weaklist */ 0, /* tp_del */ 0, /* tp_version_tag */ #if PY_MAJOR_VERSION >= 3 0, /* tp_finalize */ #endif }; static bool PyObject_IsUMat(PyObject *o) { return (o != NULL) && PyObject_TypeCheck(o, &cv2_UMatWrapperType); } static bool pyopencv_to(PyObject* o, UMat& um, const ArgInfo info) { if (PyObject_IsUMat(o)) { um = *((cv2_UMatWrapperObject *) o)->um; return true; } Mat m; if (!pyopencv_to(o, m, info)) { return false; } m.copyTo(um); return true; } template<> bool pyopencv_to(PyObject* o, UMat& um, const char* name) { return pyopencv_to(o, um, ArgInfo(name, 0)); } template<> PyObject* pyopencv_from(const UMat& m) { PyObject *o = PyObject_CallObject((PyObject *) &cv2_UMatWrapperType, NULL); *((cv2_UMatWrapperObject *) o)->um = m; return o; } static bool pyopencv_to(PyObject *o, Scalar& s, const ArgInfo info) { if(!o || o == Py_None) return true; if (PySequence_Check(o)) { PyObject *fi = PySequence_Fast(o, info.name); if (fi == NULL) return false; if (4 < PySequence_Fast_GET_SIZE(fi)) { failmsg("Scalar value for argument '%s' is longer than 4", info.name); return false; } for (Py_ssize_t i = 0; i < PySequence_Fast_GET_SIZE(fi); i++) { PyObject *item = PySequence_Fast_GET_ITEM(fi, i); if (PyFloat_Check(item) || PyInt_Check(item)) { s[(int)i] = PyFloat_AsDouble(item); } else { failmsg("Scalar value for argument '%s' is not numeric", info.name); return false; } } Py_DECREF(fi); } else { if (PyFloat_Check(o) || PyInt_Check(o)) { s[0] = PyFloat_AsDouble(o); } else { failmsg("Scalar value for argument '%s' is not numeric", info.name); return false; } } return true; } template<> bool pyopencv_to(PyObject *o, Scalar& s, const char *name) { return pyopencv_to(o, s, ArgInfo(name, 0)); } template<> PyObject* pyopencv_from(const Scalar& src) { return Py_BuildValue("(dddd)", src[0], src[1], src[2], src[3]); } template<> PyObject* pyopencv_from(const bool& value) { return PyBool_FromLong(value); } template<> bool pyopencv_to(PyObject* obj, bool& value, const char* name) { (void)name; if(!obj || obj == Py_None) return true; int _val = PyObject_IsTrue(obj); if(_val < 0) return false; value = _val > 0; return true; } template<> PyObject* pyopencv_from(const size_t& value) { return PyLong_FromSize_t(value); } template<> bool pyopencv_to(PyObject* obj, size_t& value, const char* name) { (void)name; if(!obj || obj == Py_None) return true; value = (int)PyLong_AsUnsignedLong(obj); return value != (size_t)-1 || !PyErr_Occurred(); } template<> PyObject* pyopencv_from(const int& value) { return PyInt_FromLong(value); } template<> bool pyopencv_to(PyObject* obj, int& value, const char* name) { (void)name; if(!obj || obj == Py_None) return true; if(PyInt_Check(obj)) value = (int)PyInt_AsLong(obj); else if(PyLong_Check(obj)) value = (int)PyLong_AsLong(obj); else return false; return value != -1 || !PyErr_Occurred(); } template<> PyObject* pyopencv_from(const uchar& value) { return PyInt_FromLong(value); } template<> bool pyopencv_to(PyObject* obj, uchar& value, const char* name) { (void)name; if(!obj || obj == Py_None) return true; int ivalue = (int)PyInt_AsLong(obj); value = cv::saturate_cast(ivalue); return ivalue != -1 || !PyErr_Occurred(); } template<> PyObject* pyopencv_from(const double& value) { return PyFloat_FromDouble(value); } template<> bool pyopencv_to(PyObject* obj, double& value, const char* name) { (void)name; if(!obj || obj == Py_None) return true; if(!!PyInt_CheckExact(obj)) value = (double)PyInt_AS_LONG(obj); else value = PyFloat_AsDouble(obj); return !PyErr_Occurred(); } template<> PyObject* pyopencv_from(const float& value) { return PyFloat_FromDouble(value); } template<> bool pyopencv_to(PyObject* obj, float& value, const char* name) { (void)name; if(!obj || obj == Py_None) return true; if(!!PyInt_CheckExact(obj)) value = (float)PyInt_AS_LONG(obj); else value = (float)PyFloat_AsDouble(obj); return !PyErr_Occurred(); } template<> PyObject* pyopencv_from(const int64& value) { return PyLong_FromLongLong(value); } template<> PyObject* pyopencv_from(const String& value) { return PyString_FromString(value.empty() ? "" : value.c_str()); } template<> bool pyopencv_to(PyObject* obj, String& value, const char* name) { (void)name; if(!obj || obj == Py_None) return true; char* str = PyString_AsString(obj); if(!str) return false; value = String(str); return true; } template<> bool pyopencv_to(PyObject* obj, Size& sz, const char* name) { (void)name; if(!obj || obj == Py_None) return true; return PyArg_ParseTuple(obj, "ii", &sz.width, &sz.height) > 0; } template<> PyObject* pyopencv_from(const Size& sz) { return Py_BuildValue("(ii)", sz.width, sz.height); } template<> bool pyopencv_to(PyObject* obj, Size_& sz, const char* name) { (void)name; if(!obj || obj == Py_None) return true; return PyArg_ParseTuple(obj, "ff", &sz.width, &sz.height) > 0; } template<> PyObject* pyopencv_from(const Size_& sz) { return Py_BuildValue("(ff)", sz.width, sz.height); } template<> bool pyopencv_to(PyObject* obj, Rect& r, const char* name) { (void)name; if(!obj || obj == Py_None) return true; return PyArg_ParseTuple(obj, "iiii", &r.x, &r.y, &r.width, &r.height) > 0; } template<> PyObject* pyopencv_from(const Rect& r) { return Py_BuildValue("(iiii)", r.x, r.y, r.width, r.height); } template<> bool pyopencv_to(PyObject* obj, Rect2d& r, const char* name) { (void)name; if(!obj || obj == Py_None) return true; return PyArg_ParseTuple(obj, "dddd", &r.x, &r.y, &r.width, &r.height) > 0; } template<> PyObject* pyopencv_from(const Rect2d& r) { return Py_BuildValue("(dddd)", r.x, r.y, r.width, r.height); } template<> bool pyopencv_to(PyObject* obj, Range& r, const char* name) { (void)name; if(!obj || obj == Py_None) return true; if(PyObject_Size(obj) == 0) { r = Range::all(); return true; } return PyArg_ParseTuple(obj, "ii", &r.start, &r.end) > 0; } template<> PyObject* pyopencv_from(const Range& r) { return Py_BuildValue("(ii)", r.start, r.end); } template<> bool pyopencv_to(PyObject* obj, Point& p, const char* name) { (void)name; if(!obj || obj == Py_None) return true; if(!!PyComplex_CheckExact(obj)) { Py_complex c = PyComplex_AsCComplex(obj); p.x = saturate_cast(c.real); p.y = saturate_cast(c.imag); return true; } return PyArg_ParseTuple(obj, "ii", &p.x, &p.y) > 0; } template<> bool pyopencv_to(PyObject* obj, Point2f& p, const char* name) { (void)name; if(!obj || obj == Py_None) return true; if(!!PyComplex_CheckExact(obj)) { Py_complex c = PyComplex_AsCComplex(obj); p.x = saturate_cast(c.real); p.y = saturate_cast(c.imag); return true; } return PyArg_ParseTuple(obj, "ff", &p.x, &p.y) > 0; } template<> bool pyopencv_to(PyObject* obj, Point2d& p, const char* name) { (void)name; if(!obj || obj == Py_None) return true; if(!!PyComplex_CheckExact(obj)) { Py_complex c = PyComplex_AsCComplex(obj); p.x = saturate_cast(c.real); p.y = saturate_cast(c.imag); return true; } return PyArg_ParseTuple(obj, "dd", &p.x, &p.y) > 0; } template<> bool pyopencv_to(PyObject* obj, Point3f& p, const char* name) { (void)name; if(!obj || obj == Py_None) return true; return PyArg_ParseTuple(obj, "fff", &p.x, &p.y, &p.z) > 0; } template<> bool pyopencv_to(PyObject* obj, Point3d& p, const char* name) { (void)name; if(!obj || obj == Py_None) return true; return PyArg_ParseTuple(obj, "ddd", &p.x, &p.y, &p.z) > 0; } template<> PyObject* pyopencv_from(const Point& p) { return Py_BuildValue("(ii)", p.x, p.y); } template<> PyObject* pyopencv_from(const Point2f& p) { return Py_BuildValue("(dd)", p.x, p.y); } template<> PyObject* pyopencv_from(const Point3f& p) { return Py_BuildValue("(ddd)", p.x, p.y, p.z); } static bool pyopencv_to(PyObject* obj, Vec4d& v, ArgInfo info) { (void)info; if (!obj) return true; return PyArg_ParseTuple(obj, "dddd", &v[0], &v[1], &v[2], &v[3]) > 0; } template<> bool pyopencv_to(PyObject* obj, Vec4d& v, const char* name) { return pyopencv_to(obj, v, ArgInfo(name, 0)); } static bool pyopencv_to(PyObject* obj, Vec4f& v, ArgInfo info) { (void)info; if (!obj) return true; return PyArg_ParseTuple(obj, "ffff", &v[0], &v[1], &v[2], &v[3]) > 0; } template<> bool pyopencv_to(PyObject* obj, Vec4f& v, const char* name) { return pyopencv_to(obj, v, ArgInfo(name, 0)); } static bool pyopencv_to(PyObject* obj, Vec4i& v, ArgInfo info) { (void)info; if (!obj) return true; return PyArg_ParseTuple(obj, "iiii", &v[0], &v[1], &v[2], &v[3]) > 0; } template<> bool pyopencv_to(PyObject* obj, Vec4i& v, const char* name) { return pyopencv_to(obj, v, ArgInfo(name, 0)); } static bool pyopencv_to(PyObject* obj, Vec3d& v, ArgInfo info) { (void)info; if (!obj) return true; return PyArg_ParseTuple(obj, "ddd", &v[0], &v[1], &v[2]) > 0; } template<> bool pyopencv_to(PyObject* obj, Vec3d& v, const char* name) { return pyopencv_to(obj, v, ArgInfo(name, 0)); } static bool pyopencv_to(PyObject* obj, Vec3f& v, ArgInfo info) { (void)info; if (!obj) return true; return PyArg_ParseTuple(obj, "fff", &v[0], &v[1], &v[2]) > 0; } template<> bool pyopencv_to(PyObject* obj, Vec3f& v, const char* name) { return pyopencv_to(obj, v, ArgInfo(name, 0)); } static bool pyopencv_to(PyObject* obj, Vec3i& v, ArgInfo info) { (void)info; if (!obj) return true; return PyArg_ParseTuple(obj, "iii", &v[0], &v[1], &v[2]) > 0; } template<> bool pyopencv_to(PyObject* obj, Vec3i& v, const char* name) { return pyopencv_to(obj, v, ArgInfo(name, 0)); } static bool pyopencv_to(PyObject* obj, Vec2d& v, ArgInfo info) { (void)info; if (!obj) return true; return PyArg_ParseTuple(obj, "dd", &v[0], &v[1]) > 0; } template<> bool pyopencv_to(PyObject* obj, Vec2d& v, const char* name) { return pyopencv_to(obj, v, ArgInfo(name, 0)); } static bool pyopencv_to(PyObject* obj, Vec2f& v, ArgInfo info) { (void)info; if (!obj) return true; return PyArg_ParseTuple(obj, "ff", &v[0], &v[1]) > 0; } template<> bool pyopencv_to(PyObject* obj, Vec2f& v, const char* name) { return pyopencv_to(obj, v, ArgInfo(name, 0)); } static bool pyopencv_to(PyObject* obj, Vec2i& v, ArgInfo info) { (void)info; if (!obj) return true; return PyArg_ParseTuple(obj, "ii", &v[0], &v[1]) > 0; } template<> bool pyopencv_to(PyObject* obj, Vec2i& v, const char* name) { return pyopencv_to(obj, v, ArgInfo(name, 0)); } template<> PyObject* pyopencv_from(const Vec4d& v) { return Py_BuildValue("(dddd)", v[0], v[1], v[2], v[3]); } template<> PyObject* pyopencv_from(const Vec4f& v) { return Py_BuildValue("(ffff)", v[0], v[1], v[2], v[3]); } template<> PyObject* pyopencv_from(const Vec4i& v) { return Py_BuildValue("(iiii)", v[0], v[1], v[2], v[3]); } template<> PyObject* pyopencv_from(const Vec3d& v) { return Py_BuildValue("(ddd)", v[0], v[1], v[2]); } template<> PyObject* pyopencv_from(const Vec3f& v) { return Py_BuildValue("(fff)", v[0], v[1], v[2]); } template<> PyObject* pyopencv_from(const Vec3i& v) { return Py_BuildValue("(iii)", v[0], v[1], v[2]); } template<> PyObject* pyopencv_from(const Vec2d& v) { return Py_BuildValue("(dd)", v[0], v[1]); } template<> PyObject* pyopencv_from(const Vec2f& v) { return Py_BuildValue("(ff)", v[0], v[1]); } template<> PyObject* pyopencv_from(const Vec2i& v) { return Py_BuildValue("(ii)", v[0], v[1]); } template<> PyObject* pyopencv_from(const Point2d& p) { return Py_BuildValue("(dd)", p.x, p.y); } template<> PyObject* pyopencv_from(const Point3d& p) { return Py_BuildValue("(ddd)", p.x, p.y, p.z); } template struct pyopencvVecConverter { static bool to(PyObject* obj, std::vector<_Tp>& value, const ArgInfo info) { typedef typename DataType<_Tp>::channel_type _Cp; if(!obj || obj == Py_None) return true; if (PyArray_Check(obj)) { Mat m; pyopencv_to(obj, m, info); m.copyTo(value); } if (!PySequence_Check(obj)) return false; PyObject *seq = PySequence_Fast(obj, info.name); if (seq == NULL) return false; int i, j, n = (int)PySequence_Fast_GET_SIZE(seq); value.resize(n); int type = traits::Type<_Tp>::value; int depth = CV_MAT_DEPTH(type), channels = CV_MAT_CN(type); PyObject** items = PySequence_Fast_ITEMS(seq); for( i = 0; i < n; i++ ) { PyObject* item = items[i]; PyObject* seq_i = 0; PyObject** items_i = &item; _Cp* data = (_Cp*)&value[i]; if( channels == 2 && PyComplex_CheckExact(item) ) { Py_complex c = PyComplex_AsCComplex(obj); data[0] = saturate_cast<_Cp>(c.real); data[1] = saturate_cast<_Cp>(c.imag); continue; } if( channels > 1 ) { if( PyArray_Check(item)) { Mat src; pyopencv_to(item, src, info); if( src.dims != 2 || src.channels() != 1 || ((src.cols != 1 || src.rows != channels) && (src.cols != channels || src.rows != 1))) break; Mat dst(src.rows, src.cols, depth, data); src.convertTo(dst, type); if( dst.data != (uchar*)data ) break; continue; } seq_i = PySequence_Fast(item, info.name); if( !seq_i || (int)PySequence_Fast_GET_SIZE(seq_i) != channels ) { Py_XDECREF(seq_i); break; } items_i = PySequence_Fast_ITEMS(seq_i); } for( j = 0; j < channels; j++ ) { PyObject* item_ij = items_i[j]; if( PyInt_Check(item_ij)) { int v = (int)PyInt_AsLong(item_ij); if( v == -1 && PyErr_Occurred() ) break; data[j] = saturate_cast<_Cp>(v); } else if( PyLong_Check(item_ij)) { int v = (int)PyLong_AsLong(item_ij); if( v == -1 && PyErr_Occurred() ) break; data[j] = saturate_cast<_Cp>(v); } else if( PyFloat_Check(item_ij)) { double v = PyFloat_AsDouble(item_ij); if( PyErr_Occurred() ) break; data[j] = saturate_cast<_Cp>(v); } else break; } Py_XDECREF(seq_i); if( j < channels ) break; } Py_DECREF(seq); return i == n; } static PyObject* from(const std::vector<_Tp>& value) { if(value.empty()) return PyTuple_New(0); int type = traits::Type<_Tp>::value; int depth = CV_MAT_DEPTH(type), channels = CV_MAT_CN(type); Mat src((int)value.size(), channels, depth, (uchar*)&value[0]); return pyopencv_from(src); } }; template bool pyopencv_to(PyObject* obj, std::vector<_Tp>& value, const ArgInfo info) { return pyopencvVecConverter<_Tp>::to(obj, value, info); } template PyObject* pyopencv_from(const std::vector<_Tp>& value) { return pyopencvVecConverter<_Tp>::from(value); } template static inline bool pyopencv_to_generic_vec(PyObject* obj, std::vector<_Tp>& value, const ArgInfo info) { if(!obj || obj == Py_None) return true; if (!PySequence_Check(obj)) return false; PyObject *seq = PySequence_Fast(obj, info.name); if (seq == NULL) return false; int i, n = (int)PySequence_Fast_GET_SIZE(seq); value.resize(n); PyObject** items = PySequence_Fast_ITEMS(seq); for( i = 0; i < n; i++ ) { PyObject* item = items[i]; if(!pyopencv_to(item, value[i], info)) break; } Py_DECREF(seq); return i == n; } template static inline PyObject* pyopencv_from_generic_vec(const std::vector<_Tp>& value) { int i, n = (int)value.size(); PyObject* seq = PyList_New(n); for( i = 0; i < n; i++ ) { PyObject* item = pyopencv_from(value[i]); if(!item) break; PyList_SET_ITEM(seq, i, item); } if( i < n ) { Py_DECREF(seq); return 0; } return seq; } template<> PyObject* pyopencv_from(const std::pair& src) { return Py_BuildValue("(id)", src.first, src.second); } template struct pyopencvVecConverter > { static bool to(PyObject* obj, std::vector >& value, const ArgInfo info) { return pyopencv_to_generic_vec(obj, value, info); } static PyObject* from(const std::vector >& value) { return pyopencv_from_generic_vec(value); } }; template struct pyopencvVecConverter > { static bool to(PyObject* obj, std::vector >& value, const ArgInfo info) { return pyopencv_to_generic_vec(obj, value, info); } static PyObject* from(const std::vector >& value) { return pyopencv_from_generic_vec(value); } }; template<> struct pyopencvVecConverter { static bool to(PyObject* obj, std::vector& value, const ArgInfo info) { return pyopencv_to_generic_vec(obj, value, info); } static PyObject* from(const std::vector& value) { return pyopencv_from_generic_vec(value); } }; template<> struct pyopencvVecConverter { static bool to(PyObject* obj, std::vector& value, const ArgInfo info) { return pyopencv_to_generic_vec(obj, value, info); } static PyObject* from(const std::vector& value) { return pyopencv_from_generic_vec(value); } }; template<> struct pyopencvVecConverter { static bool to(PyObject* obj, std::vector& value, const ArgInfo info) { return pyopencv_to_generic_vec(obj, value, info); } static PyObject* from(const std::vector& value) { return pyopencv_from_generic_vec(value); } }; template<> struct pyopencvVecConverter { static bool to(PyObject* obj, std::vector& value, const ArgInfo info) { return pyopencv_to_generic_vec(obj, value, info); } static PyObject* from(const std::vector& value) { return pyopencv_from_generic_vec(value); } }; template<> bool pyopencv_to(PyObject *obj, TermCriteria& dst, const char *name) { (void)name; if(!obj) return true; return PyArg_ParseTuple(obj, "iid", &dst.type, &dst.maxCount, &dst.epsilon) > 0; } template<> PyObject* pyopencv_from(const TermCriteria& src) { return Py_BuildValue("(iid)", src.type, src.maxCount, src.epsilon); } template<> bool pyopencv_to(PyObject *obj, RotatedRect& dst, const char *name) { (void)name; if(!obj) return true; return PyArg_ParseTuple(obj, "(ff)(ff)f", &dst.center.x, &dst.center.y, &dst.size.width, &dst.size.height, &dst.angle) > 0; } template<> PyObject* pyopencv_from(const RotatedRect& src) { return Py_BuildValue("((ff)(ff)f)", src.center.x, src.center.y, src.size.width, src.size.height, src.angle); } template<> PyObject* pyopencv_from(const Moments& m) { return Py_BuildValue("{s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d}", "m00", m.m00, "m10", m.m10, "m01", m.m01, "m20", m.m20, "m11", m.m11, "m02", m.m02, "m30", m.m30, "m21", m.m21, "m12", m.m12, "m03", m.m03, "mu20", m.mu20, "mu11", m.mu11, "mu02", m.mu02, "mu30", m.mu30, "mu21", m.mu21, "mu12", m.mu12, "mu03", m.mu03, "nu20", m.nu20, "nu11", m.nu11, "nu02", m.nu02, "nu30", m.nu30, "nu21", m.nu21, "nu12", m.nu12, "nu03", m.nu03); } #include "pyopencv_custom_headers.h" static int OnError(int status, const char *func_name, const char *err_msg, const char *file_name, int line, void *userdata) { PyGILState_STATE gstate; gstate = PyGILState_Ensure(); PyObject *on_error = (PyObject*)userdata; PyObject *args = Py_BuildValue("isssi", status, func_name, err_msg, file_name, line); PyObject *r = PyObject_Call(on_error, args, NULL); if (r == NULL) { PyErr_Print(); } else { Py_DECREF(r); } Py_DECREF(args); PyGILState_Release(gstate); return 0; // The return value isn't used } static PyObject *pycvRedirectError(PyObject*, PyObject *args, PyObject *kw) { const char *keywords[] = { "on_error", NULL }; PyObject *on_error; if (!PyArg_ParseTupleAndKeywords(args, kw, "O", (char**)keywords, &on_error)) return NULL; if ((on_error != Py_None) && !PyCallable_Check(on_error)) { PyErr_SetString(PyExc_TypeError, "on_error must be callable"); return NULL; } // Keep track of the previous handler parameter, so we can decref it when no longer used static PyObject* last_on_error = NULL; if (last_on_error) { Py_DECREF(last_on_error); last_on_error = NULL; } if (on_error == Py_None) { ERRWRAP2(redirectError(NULL)); } else { last_on_error = on_error; Py_INCREF(last_on_error); ERRWRAP2(redirectError(OnError, last_on_error)); } Py_RETURN_NONE; } static void OnMouse(int event, int x, int y, int flags, void* param) { PyGILState_STATE gstate; gstate = PyGILState_Ensure(); PyObject *o = (PyObject*)param; PyObject *args = Py_BuildValue("iiiiO", event, x, y, flags, PyTuple_GetItem(o, 1)); PyObject *r = PyObject_Call(PyTuple_GetItem(o, 0), args, NULL); if (r == NULL) PyErr_Print(); else Py_DECREF(r); Py_DECREF(args); PyGILState_Release(gstate); } #ifdef HAVE_OPENCV_HIGHGUI static PyObject *pycvSetMouseCallback(PyObject*, PyObject *args, PyObject *kw) { const char *keywords[] = { "window_name", "on_mouse", "param", NULL }; char* name; PyObject *on_mouse; PyObject *param = NULL; if (!PyArg_ParseTupleAndKeywords(args, kw, "sO|O", (char**)keywords, &name, &on_mouse, ¶m)) return NULL; if (!PyCallable_Check(on_mouse)) { PyErr_SetString(PyExc_TypeError, "on_mouse must be callable"); return NULL; } if (param == NULL) { param = Py_None; } PyObject* py_callback_info = Py_BuildValue("OO", on_mouse, param); static std::map registered_callbacks; std::map::iterator i = registered_callbacks.find(name); if (i != registered_callbacks.end()) { Py_DECREF(i->second); i->second = py_callback_info; } else { registered_callbacks.insert(std::pair(std::string(name), py_callback_info)); } ERRWRAP2(setMouseCallback(name, OnMouse, py_callback_info)); Py_RETURN_NONE; } #endif static void OnChange(int pos, void *param) { PyGILState_STATE gstate; gstate = PyGILState_Ensure(); PyObject *o = (PyObject*)param; PyObject *args = Py_BuildValue("(i)", pos); PyObject *r = PyObject_Call(PyTuple_GetItem(o, 0), args, NULL); if (r == NULL) PyErr_Print(); else Py_DECREF(r); Py_DECREF(args); PyGILState_Release(gstate); } #ifdef HAVE_OPENCV_HIGHGUI static PyObject *pycvCreateTrackbar(PyObject*, PyObject *args) { PyObject *on_change; char* trackbar_name; char* window_name; int *value = new int; int count; if (!PyArg_ParseTuple(args, "ssiiO", &trackbar_name, &window_name, value, &count, &on_change)) return NULL; if (!PyCallable_Check(on_change)) { PyErr_SetString(PyExc_TypeError, "on_change must be callable"); return NULL; } PyObject* py_callback_info = Py_BuildValue("OO", on_change, Py_None); std::string name = std::string(window_name) + ":" + std::string(trackbar_name); static std::map registered_callbacks; std::map::iterator i = registered_callbacks.find(name); if (i != registered_callbacks.end()) { Py_DECREF(i->second); i->second = py_callback_info; } else { registered_callbacks.insert(std::pair(name, py_callback_info)); } ERRWRAP2(createTrackbar(trackbar_name, window_name, value, count, OnChange, py_callback_info)); Py_RETURN_NONE; } static void OnButtonChange(int state, void *param) { PyGILState_STATE gstate; gstate = PyGILState_Ensure(); PyObject *o = (PyObject*)param; PyObject *args; if(PyTuple_GetItem(o, 1) != NULL) { args = Py_BuildValue("(iO)", state, PyTuple_GetItem(o,1)); } else { args = Py_BuildValue("(i)", state); } PyObject *r = PyObject_Call(PyTuple_GetItem(o, 0), args, NULL); if (r == NULL) PyErr_Print(); else Py_DECREF(r); Py_DECREF(args); PyGILState_Release(gstate); } static PyObject *pycvCreateButton(PyObject*, PyObject *args, PyObject *kw) { const char* keywords[] = {"buttonName", "onChange", "userData", "buttonType", "initialButtonState", NULL}; PyObject *on_change; PyObject *userdata = NULL; char* button_name; int button_type = 0; int initial_button_state = 0; if (!PyArg_ParseTupleAndKeywords(args, kw, "sO|Oii", (char**)keywords, &button_name, &on_change, &userdata, &button_type, &initial_button_state)) return NULL; if (!PyCallable_Check(on_change)) { PyErr_SetString(PyExc_TypeError, "onChange must be callable"); return NULL; } if (userdata == NULL) { userdata = Py_None; } PyObject* py_callback_info = Py_BuildValue("OO", on_change, userdata); std::string name(button_name); static std::map registered_callbacks; std::map::iterator i = registered_callbacks.find(name); if (i != registered_callbacks.end()) { Py_DECREF(i->second); i->second = py_callback_info; } else { registered_callbacks.insert(std::pair(name, py_callback_info)); } ERRWRAP2(createButton(button_name, OnButtonChange, py_callback_info, button_type, initial_button_state != 0)); Py_RETURN_NONE; } #endif /////////////////////////////////////////////////////////////////////////////////////// static int convert_to_char(PyObject *o, char *dst, const char *name = "no_name") { if (PyString_Check(o) && PyString_Size(o) == 1) { *dst = PyString_AsString(o)[0]; return 1; } else { (*dst) = 0; return failmsg("Expected single character string for argument '%s'", name); } } #if PY_MAJOR_VERSION >= 3 #define MKTYPE2(NAME) pyopencv_##NAME##_specials(); if (!to_ok(&pyopencv_##NAME##_Type)) return NULL; #else #define MKTYPE2(NAME) pyopencv_##NAME##_specials(); if (!to_ok(&pyopencv_##NAME##_Type)) return #endif #ifdef __GNUC__ # pragma GCC diagnostic ignored "-Wunused-parameter" # pragma GCC diagnostic ignored "-Wmissing-field-initializers" #endif #include "pyopencv_generated_types.h" #include "pyopencv_generated_funcs.h" static PyMethodDef special_methods[] = { {"redirectError", (PyCFunction)pycvRedirectError, METH_VARARGS | METH_KEYWORDS, "redirectError(onError) -> None"}, #ifdef HAVE_OPENCV_HIGHGUI {"createTrackbar", pycvCreateTrackbar, METH_VARARGS, "createTrackbar(trackbarName, windowName, value, count, onChange) -> None"}, {"createButton", (PyCFunction)pycvCreateButton, METH_VARARGS | METH_KEYWORDS, "createButton(buttonName, onChange [, userData, buttonType, initialButtonState]) -> None"}, {"setMouseCallback", (PyCFunction)pycvSetMouseCallback, METH_VARARGS | METH_KEYWORDS, "setMouseCallback(windowName, onMouse [, param]) -> None"}, #endif {NULL, NULL}, }; /************************************************************************/ /* Module init */ struct ConstDef { const char * name; long val; }; static void init_submodule(PyObject * root, const char * name, PyMethodDef * methods, ConstDef * consts) { // traverse and create nested submodules std::string s = name; size_t i = s.find('.'); while (i < s.length() && i != std::string::npos) { size_t j = s.find('.', i); if (j == std::string::npos) j = s.length(); std::string short_name = s.substr(i, j-i); std::string full_name = s.substr(0, j); i = j+1; PyObject * d = PyModule_GetDict(root); PyObject * submod = PyDict_GetItemString(d, short_name.c_str()); if (submod == NULL) { submod = PyImport_AddModule(full_name.c_str()); PyDict_SetItemString(d, short_name.c_str(), submod); } if (short_name != "") root = submod; } // populate module's dict PyObject * d = PyModule_GetDict(root); for (PyMethodDef * m = methods; m->ml_name != NULL; ++m) { PyObject * method_obj = PyCFunction_NewEx(m, NULL, NULL); PyDict_SetItemString(d, m->ml_name, method_obj); Py_DECREF(method_obj); } for (ConstDef * c = consts; c->name != NULL; ++c) { PyDict_SetItemString(d, c->name, PyInt_FromLong(c->val)); } } #include "pyopencv_generated_ns_reg.h" static int to_ok(PyTypeObject *to) { to->tp_alloc = PyType_GenericAlloc; to->tp_new = PyType_GenericNew; to->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE; return (PyType_Ready(to) == 0); } #if PY_MAJOR_VERSION >= 3 extern "C" CV_EXPORTS PyObject* PyInit_cv2(); static struct PyModuleDef cv2_moduledef = { PyModuleDef_HEAD_INIT, MODULESTR, "Python wrapper for OpenCV.", -1, /* size of per-interpreter state of the module, or -1 if the module keeps state in global variables. */ special_methods }; PyObject* PyInit_cv2() #else extern "C" CV_EXPORTS void initcv2(); void initcv2() #endif { import_array(); #include "pyopencv_generated_type_reg.h" #if PY_MAJOR_VERSION >= 3 PyObject* m = PyModule_Create(&cv2_moduledef); #else PyObject* m = Py_InitModule(MODULESTR, special_methods); #endif init_submodules(m); // from "pyopencv_generated_ns_reg.h" PyObject* d = PyModule_GetDict(m); PyDict_SetItemString(d, "__version__", PyString_FromString(CV_VERSION)); opencv_error = PyErr_NewException((char*)MODULESTR".error", NULL, NULL); PyDict_SetItemString(d, "error", opencv_error); //Registering UMatWrapper python class in cv2 module: if (PyType_Ready(&cv2_UMatWrapperType) < 0) #if PY_MAJOR_VERSION >= 3 return NULL; #else return; #endif #if PY_MAJOR_VERSION >= 3 #define PUBLISH_OBJECT(name, type) Py_INCREF(&type);\ PyModule_AddObject(m, name, (PyObject *)&type); #else // Unrolled Py_INCREF(&type) without (PyObject*) cast // due to "warning: dereferencing type-punned pointer will break strict-aliasing rules" #define PUBLISH_OBJECT(name, type) _Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA (&type)->ob_refcnt++;\ PyModule_AddObject(m, name, (PyObject *)&type); #endif PUBLISH_OBJECT("UMat", cv2_UMatWrapperType); #include "pyopencv_generated_type_publish.h" #define PUBLISH(I) PyDict_SetItemString(d, #I, PyInt_FromLong(I)) //#define PUBLISHU(I) PyDict_SetItemString(d, #I, PyLong_FromUnsignedLong(I)) #define PUBLISH2(I, value) PyDict_SetItemString(d, #I, PyLong_FromLong(value)) PUBLISH(CV_8U); PUBLISH(CV_8UC1); PUBLISH(CV_8UC2); PUBLISH(CV_8UC3); PUBLISH(CV_8UC4); PUBLISH(CV_8S); PUBLISH(CV_8SC1); PUBLISH(CV_8SC2); PUBLISH(CV_8SC3); PUBLISH(CV_8SC4); PUBLISH(CV_16U); PUBLISH(CV_16UC1); PUBLISH(CV_16UC2); PUBLISH(CV_16UC3); PUBLISH(CV_16UC4); PUBLISH(CV_16S); PUBLISH(CV_16SC1); PUBLISH(CV_16SC2); PUBLISH(CV_16SC3); PUBLISH(CV_16SC4); PUBLISH(CV_32S); PUBLISH(CV_32SC1); PUBLISH(CV_32SC2); PUBLISH(CV_32SC3); PUBLISH(CV_32SC4); PUBLISH(CV_32F); PUBLISH(CV_32FC1); PUBLISH(CV_32FC2); PUBLISH(CV_32FC3); PUBLISH(CV_32FC4); PUBLISH(CV_64F); PUBLISH(CV_64FC1); PUBLISH(CV_64FC2); PUBLISH(CV_64FC3); PUBLISH(CV_64FC4); #if PY_MAJOR_VERSION >= 3 return m; #endif }