// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "test_precomp.hpp" #include "opencv2/calib3d.hpp" namespace opencv_test { namespace { class CV_CalibrateHandEyeTest : public cvtest::BaseTest { public: CV_CalibrateHandEyeTest() { eps_rvec[CALIB_HAND_EYE_TSAI] = 1.0e-8; eps_rvec[CALIB_HAND_EYE_PARK] = 1.0e-8; eps_rvec[CALIB_HAND_EYE_HORAUD] = 1.0e-8; eps_rvec[CALIB_HAND_EYE_ANDREFF] = 1.0e-8; eps_rvec[CALIB_HAND_EYE_DANIILIDIS] = 1.0e-8; eps_tvec[CALIB_HAND_EYE_TSAI] = 1.0e-8; eps_tvec[CALIB_HAND_EYE_PARK] = 1.0e-8; eps_tvec[CALIB_HAND_EYE_HORAUD] = 1.0e-8; eps_tvec[CALIB_HAND_EYE_ANDREFF] = 1.0e-8; eps_tvec[CALIB_HAND_EYE_DANIILIDIS] = 1.0e-8; eps_rvec_noise[CALIB_HAND_EYE_TSAI] = 2.0e-2; eps_rvec_noise[CALIB_HAND_EYE_PARK] = 2.0e-2; eps_rvec_noise[CALIB_HAND_EYE_HORAUD] = 2.0e-2; eps_rvec_noise[CALIB_HAND_EYE_ANDREFF] = 1.0e-2; eps_rvec_noise[CALIB_HAND_EYE_DANIILIDIS] = 1.0e-2; eps_tvec_noise[CALIB_HAND_EYE_TSAI] = 5.0e-2; eps_tvec_noise[CALIB_HAND_EYE_PARK] = 5.0e-2; eps_tvec_noise[CALIB_HAND_EYE_HORAUD] = 5.0e-2; eps_tvec_noise[CALIB_HAND_EYE_ANDREFF] = 5.0e-2; eps_tvec_noise[CALIB_HAND_EYE_DANIILIDIS] = 5.0e-2; } protected: virtual void run(int); void generatePose(RNG& rng, double min_theta, double max_theta, double min_tx, double max_tx, double min_ty, double max_ty, double min_tz, double max_tz, Mat& R, Mat& tvec, bool randSign=false); void simulateData(RNG& rng, int nPoses, std::vector &R_gripper2base, std::vector &t_gripper2base, std::vector &R_target2cam, std::vector &t_target2cam, bool noise, Mat& R_cam2gripper, Mat& t_cam2gripper); Mat homogeneousInverse(const Mat& T); std::string getMethodName(HandEyeCalibrationMethod method); double sign_double(double val); double eps_rvec[5]; double eps_tvec[5]; double eps_rvec_noise[5]; double eps_tvec_noise[5]; }; void CV_CalibrateHandEyeTest::run(int) { ts->set_failed_test_info(cvtest::TS::OK); RNG& rng = ts->get_rng(); std::vector > vec_rvec_diff(5); std::vector > vec_tvec_diff(5); std::vector > vec_rvec_diff_noise(5); std::vector > vec_tvec_diff_noise(5); std::vector methods; methods.push_back(CALIB_HAND_EYE_TSAI); methods.push_back(CALIB_HAND_EYE_PARK); methods.push_back(CALIB_HAND_EYE_HORAUD); methods.push_back(CALIB_HAND_EYE_ANDREFF); methods.push_back(CALIB_HAND_EYE_DANIILIDIS); const int nTests = 100; for (int i = 0; i < nTests; i++) { const int nPoses = 10; { //No noise std::vector R_gripper2base, t_gripper2base; std::vector R_target2cam, t_target2cam; Mat R_cam2gripper_true, t_cam2gripper_true; const bool noise = false; simulateData(rng, nPoses, R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, noise, R_cam2gripper_true, t_cam2gripper_true); for (size_t idx = 0; idx < methods.size(); idx++) { Mat rvec_cam2gripper_true; cv::Rodrigues(R_cam2gripper_true, rvec_cam2gripper_true); Mat R_cam2gripper_est, t_cam2gripper_est; calibrateHandEye(R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, R_cam2gripper_est, t_cam2gripper_est, methods[idx]); Mat rvec_cam2gripper_est; cv::Rodrigues(R_cam2gripper_est, rvec_cam2gripper_est); double rvecDiff = cvtest::norm(rvec_cam2gripper_true, rvec_cam2gripper_est, NORM_L2); double tvecDiff = cvtest::norm(t_cam2gripper_true, t_cam2gripper_est, NORM_L2); vec_rvec_diff[idx].push_back(rvecDiff); vec_tvec_diff[idx].push_back(tvecDiff); const double epsilon_rvec = eps_rvec[idx]; const double epsilon_tvec = eps_tvec[idx]; //Maybe a better accuracy test would be to compare the mean and std errors with some thresholds? if (rvecDiff > epsilon_rvec || tvecDiff > epsilon_tvec) { ts->printf(cvtest::TS::LOG, "Invalid accuracy (no noise) for method: %s, rvecDiff: %f, epsilon_rvec: %f, tvecDiff: %f, epsilon_tvec: %f\n", getMethodName(methods[idx]).c_str(), rvecDiff, epsilon_rvec, tvecDiff, epsilon_tvec); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); } } } { //Gaussian noise on transformations between calibration target frame and camera frame and between gripper and robot base frames std::vector R_gripper2base, t_gripper2base; std::vector R_target2cam, t_target2cam; Mat R_cam2gripper_true, t_cam2gripper_true; const bool noise = true; simulateData(rng, nPoses, R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, noise, R_cam2gripper_true, t_cam2gripper_true); for (size_t idx = 0; idx < methods.size(); idx++) { Mat rvec_cam2gripper_true; cv::Rodrigues(R_cam2gripper_true, rvec_cam2gripper_true); Mat R_cam2gripper_est, t_cam2gripper_est; calibrateHandEye(R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, R_cam2gripper_est, t_cam2gripper_est, methods[idx]); Mat rvec_cam2gripper_est; cv::Rodrigues(R_cam2gripper_est, rvec_cam2gripper_est); double rvecDiff = cvtest::norm(rvec_cam2gripper_true, rvec_cam2gripper_est, NORM_L2); double tvecDiff = cvtest::norm(t_cam2gripper_true, t_cam2gripper_est, NORM_L2); vec_rvec_diff_noise[idx].push_back(rvecDiff); vec_tvec_diff_noise[idx].push_back(tvecDiff); const double epsilon_rvec = eps_rvec_noise[idx]; const double epsilon_tvec = eps_tvec_noise[idx]; //Maybe a better accuracy test would be to compare the mean and std errors with some thresholds? if (rvecDiff > epsilon_rvec || tvecDiff > epsilon_tvec) { ts->printf(cvtest::TS::LOG, "Invalid accuracy (noise) for method: %s, rvecDiff: %f, epsilon_rvec: %f, tvecDiff: %f, epsilon_tvec: %f\n", getMethodName(methods[idx]).c_str(), rvecDiff, epsilon_rvec, tvecDiff, epsilon_tvec); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); } } } } for (size_t idx = 0; idx < methods.size(); idx++) { { double max_rvec_diff = *std::max_element(vec_rvec_diff[idx].begin(), vec_rvec_diff[idx].end()); double mean_rvec_diff = std::accumulate(vec_rvec_diff[idx].begin(), vec_rvec_diff[idx].end(), 0.0) / vec_rvec_diff[idx].size(); double sq_sum_rvec_diff = std::inner_product(vec_rvec_diff[idx].begin(), vec_rvec_diff[idx].end(), vec_rvec_diff[idx].begin(), 0.0); double std_rvec_diff = std::sqrt(sq_sum_rvec_diff / vec_rvec_diff[idx].size() - mean_rvec_diff * mean_rvec_diff); double max_tvec_diff = *std::max_element(vec_tvec_diff[idx].begin(), vec_tvec_diff[idx].end()); double mean_tvec_diff = std::accumulate(vec_tvec_diff[idx].begin(), vec_tvec_diff[idx].end(), 0.0) / vec_tvec_diff[idx].size(); double sq_sum_tvec_diff = std::inner_product(vec_tvec_diff[idx].begin(), vec_tvec_diff[idx].end(), vec_tvec_diff[idx].begin(), 0.0); double std_tvec_diff = std::sqrt(sq_sum_tvec_diff / vec_tvec_diff[idx].size() - mean_tvec_diff * mean_tvec_diff); std::cout << "\nMethod " << getMethodName(methods[idx]) << ":\n" << "Max rvec error: " << max_rvec_diff << ", Mean rvec error: " << mean_rvec_diff << ", Std rvec error: " << std_rvec_diff << "\n" << "Max tvec error: " << max_tvec_diff << ", Mean tvec error: " << mean_tvec_diff << ", Std tvec error: " << std_tvec_diff << std::endl; } { double max_rvec_diff = *std::max_element(vec_rvec_diff_noise[idx].begin(), vec_rvec_diff_noise[idx].end()); double mean_rvec_diff = std::accumulate(vec_rvec_diff_noise[idx].begin(), vec_rvec_diff_noise[idx].end(), 0.0) / vec_rvec_diff_noise[idx].size(); double sq_sum_rvec_diff = std::inner_product(vec_rvec_diff_noise[idx].begin(), vec_rvec_diff_noise[idx].end(), vec_rvec_diff_noise[idx].begin(), 0.0); double std_rvec_diff = std::sqrt(sq_sum_rvec_diff / vec_rvec_diff_noise[idx].size() - mean_rvec_diff * mean_rvec_diff); double max_tvec_diff = *std::max_element(vec_tvec_diff_noise[idx].begin(), vec_tvec_diff_noise[idx].end()); double mean_tvec_diff = std::accumulate(vec_tvec_diff_noise[idx].begin(), vec_tvec_diff_noise[idx].end(), 0.0) / vec_tvec_diff_noise[idx].size(); double sq_sum_tvec_diff = std::inner_product(vec_tvec_diff_noise[idx].begin(), vec_tvec_diff_noise[idx].end(), vec_tvec_diff_noise[idx].begin(), 0.0); double std_tvec_diff = std::sqrt(sq_sum_tvec_diff / vec_tvec_diff_noise[idx].size() - mean_tvec_diff * mean_tvec_diff); std::cout << "Method (noise) " << getMethodName(methods[idx]) << ":\n" << "Max rvec error: " << max_rvec_diff << ", Mean rvec error: " << mean_rvec_diff << ", Std rvec error: " << std_rvec_diff << "\n" << "Max tvec error: " << max_tvec_diff << ", Mean tvec error: " << mean_tvec_diff << ", Std tvec error: " << std_tvec_diff << std::endl; } } } void CV_CalibrateHandEyeTest::generatePose(RNG& rng, double min_theta, double max_theta, double min_tx, double max_tx, double min_ty, double max_ty, double min_tz, double max_tz, Mat& R, Mat& tvec, bool random_sign) { Mat axis(3, 1, CV_64FC1); for (int i = 0; i < 3; i++) { axis.at(i,0) = rng.uniform(-1.0, 1.0); } double theta = rng.uniform(min_theta, max_theta); if (random_sign) { theta *= sign_double(rng.uniform(-1.0, 1.0)); } Mat rvec(3, 1, CV_64FC1); rvec.at(0,0) = theta*axis.at(0,0); rvec.at(1,0) = theta*axis.at(1,0); rvec.at(2,0) = theta*axis.at(2,0); tvec.create(3, 1, CV_64FC1); tvec.at(0,0) = rng.uniform(min_tx, max_tx); tvec.at(1,0) = rng.uniform(min_ty, max_ty); tvec.at(2,0) = rng.uniform(min_tz, max_tz); if (random_sign) { tvec.at(0,0) *= sign_double(rng.uniform(-1.0, 1.0)); tvec.at(1,0) *= sign_double(rng.uniform(-1.0, 1.0)); tvec.at(2,0) *= sign_double(rng.uniform(-1.0, 1.0)); } cv::Rodrigues(rvec, R); } void CV_CalibrateHandEyeTest::simulateData(RNG& rng, int nPoses, std::vector &R_gripper2base, std::vector &t_gripper2base, std::vector &R_target2cam, std::vector &t_target2cam, bool noise, Mat& R_cam2gripper, Mat& t_cam2gripper) { //to avoid generating values close to zero, //we use positive range values and randomize the sign const bool random_sign = true; generatePose(rng, 10.0*CV_PI/180.0, 50.0*CV_PI/180.0, 0.05, 0.5, 0.05, 0.5, 0.05, 0.5, R_cam2gripper, t_cam2gripper, random_sign); Mat R_target2base, t_target2base; generatePose(rng, 5.0*CV_PI/180.0, 85.0*CV_PI/180.0, 0.5, 3.5, 0.5, 3.5, 0.5, 3.5, R_target2base, t_target2base, random_sign); for (int i = 0; i < nPoses; i++) { Mat R_gripper2base_, t_gripper2base_; generatePose(rng, 5.0*CV_PI/180.0, 45.0*CV_PI/180.0, 0.5, 1.5, 0.5, 1.5, 0.5, 1.5, R_gripper2base_, t_gripper2base_, random_sign); R_gripper2base.push_back(R_gripper2base_); t_gripper2base.push_back(t_gripper2base_); Mat T_cam2gripper = Mat::eye(4, 4, CV_64FC1); R_cam2gripper.copyTo(T_cam2gripper(Rect(0, 0, 3, 3))); t_cam2gripper.copyTo(T_cam2gripper(Rect(3, 0, 1, 3))); Mat T_gripper2base = Mat::eye(4, 4, CV_64FC1); R_gripper2base_.copyTo(T_gripper2base(Rect(0, 0, 3, 3))); t_gripper2base_.copyTo(T_gripper2base(Rect(3, 0, 1, 3))); Mat T_base2cam = homogeneousInverse(T_cam2gripper) * homogeneousInverse(T_gripper2base); Mat T_target2base = Mat::eye(4, 4, CV_64FC1); R_target2base.copyTo(T_target2base(Rect(0, 0, 3, 3))); t_target2base.copyTo(T_target2base(Rect(3, 0, 1, 3))); Mat T_target2cam = T_base2cam * T_target2base; if (noise) { //Add some noise for the transformation between the target and the camera Mat R_target2cam_noise = T_target2cam(Rect(0, 0, 3, 3)); Mat rvec_target2cam_noise; cv::Rodrigues(R_target2cam_noise, rvec_target2cam_noise); rvec_target2cam_noise.at(0,0) += rng.gaussian(0.002); rvec_target2cam_noise.at(1,0) += rng.gaussian(0.002); rvec_target2cam_noise.at(2,0) += rng.gaussian(0.002); cv::Rodrigues(rvec_target2cam_noise, R_target2cam_noise); Mat t_target2cam_noise = T_target2cam(Rect(3, 0, 1, 3)); t_target2cam_noise.at(0,0) += rng.gaussian(0.005); t_target2cam_noise.at(1,0) += rng.gaussian(0.005); t_target2cam_noise.at(2,0) += rng.gaussian(0.005); //Add some noise for the transformation between the gripper and the robot base Mat R_gripper2base_noise = T_gripper2base(Rect(0, 0, 3, 3)); Mat rvec_gripper2base_noise; cv::Rodrigues(R_gripper2base_noise, rvec_gripper2base_noise); rvec_gripper2base_noise.at(0,0) += rng.gaussian(0.001); rvec_gripper2base_noise.at(1,0) += rng.gaussian(0.001); rvec_gripper2base_noise.at(2,0) += rng.gaussian(0.001); cv::Rodrigues(rvec_gripper2base_noise, R_gripper2base_noise); Mat t_gripper2base_noise = T_gripper2base(Rect(3, 0, 1, 3)); t_gripper2base_noise.at(0,0) += rng.gaussian(0.001); t_gripper2base_noise.at(1,0) += rng.gaussian(0.001); t_gripper2base_noise.at(2,0) += rng.gaussian(0.001); } // test rvec represenation Mat rvec_target2cam; cv::Rodrigues(T_target2cam(Rect(0, 0, 3, 3)), rvec_target2cam); R_target2cam.push_back(rvec_target2cam); t_target2cam.push_back(T_target2cam(Rect(3, 0, 1, 3))); } } Mat CV_CalibrateHandEyeTest::homogeneousInverse(const Mat& T) { CV_Assert( T.rows == 4 && T.cols == 4 ); Mat R = T(Rect(0, 0, 3, 3)); Mat t = T(Rect(3, 0, 1, 3)); Mat Rt = R.t(); Mat tinv = -Rt * t; Mat Tinv = Mat::eye(4, 4, T.type()); Rt.copyTo(Tinv(Rect(0, 0, 3, 3))); tinv.copyTo(Tinv(Rect(3, 0, 1, 3))); return Tinv; } std::string CV_CalibrateHandEyeTest::getMethodName(HandEyeCalibrationMethod method) { std::string method_name = ""; switch (method) { case CALIB_HAND_EYE_TSAI: method_name = "Tsai"; break; case CALIB_HAND_EYE_PARK: method_name = "Park"; break; case CALIB_HAND_EYE_HORAUD: method_name = "Horaud"; break; case CALIB_HAND_EYE_ANDREFF: method_name = "Andreff"; break; case CALIB_HAND_EYE_DANIILIDIS: method_name = "Daniilidis"; break; default: break; } return method_name; } double CV_CalibrateHandEyeTest::sign_double(double val) { return (0 < val) - (val < 0); } /////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Calib3d_CalibrateHandEye, regression) { CV_CalibrateHandEyeTest test; test.safe_run(); } }} // namespace