#!/usr/bin/env python import argparse import sft import sys, os, os.path, glob, math, cv2 from datetime import datetime import numpy plot_colors = ['b', 'r', 'g', 'c', 'm'] # "key" : ( b, g, r) bgr = { "red" : ( 0, 0, 255), "green" : ( 0, 255, 0), "blue" : (255, 0 , 0)} def call_parser(f, a): return eval( "sft.parse_" + f + "('" + a + "')") if __name__ == "__main__": parser = argparse.ArgumentParser(description = 'Plot ROC curve using Caltech mathod of per image detection performance estimation.') # positional parser.add_argument("cascade", help = "Path to the tested detector.", nargs='+') parser.add_argument("input", help = "Image sequence pattern.") parser.add_argument("annotations", help = "Path to the annotations.") # optional parser.add_argument("-m", "--min_scale", dest = "min_scale", type = float, metavar= "fl", help = "Minimum scale to be tested.", default = 0.4) parser.add_argument("-M", "--max_scale", dest = "max_scale", type = float, metavar= "fl", help = "Maximum scale to be tested.", default = 5.0) parser.add_argument("-o", "--output", dest = "output", type = str, metavar= "path", help = "Path to store resultiong image.", default = "./roc.png") parser.add_argument("-n", "--nscales", dest = "nscales", type = int, metavar= "n", help = "Prefered count of scales from min to max.", default = 55) # required parser.add_argument("-f", "--anttn-format", dest = "anttn_format", choices = ['inria', 'caltech', "idl"], help = "Annotation file for test sequence.", required = True) args = parser.parse_args() print args.cascade # # parse annotations sft.initPlot() samples = call_parser(args.anttn_format, args.annotations) for idx, each in enumerate(args.cascade): print each cascade = sft.cascade(args.min_scale, args.max_scale, args.nscales, each) pattern = args.input camera = cv2.VideoCapture(pattern) # for plotting over dataset nannotated = 0 nframes = 0 confidenses = [] tp = [] while True: ret, img = camera.read() if not ret: break; name = pattern % (nframes,) _, tail = os.path.split(name) boxes = samples[tail] boxes = sft.norm_acpect_ratio(boxes, 0.5) nannotated = nannotated + len(boxes) nframes = nframes + 1 rects, confs = cascade.detect(img, rois = None) if confs is None: continue dts = sft.convert2detections(rects, confs) confs = confs.tolist()[0] confs.sort(lambda x, y : -1 if (x - y) > 0 else 1) confidenses = confidenses + confs matched = sft.match(boxes, dts) tp = tp + matched print nframes, nannotated fppi, miss_rate = sft.computeROC(confidenses, tp, nannotated, nframes) sft.plotLogLog(fppi, miss_rate, plot_colors[idx]) sft.showPlot("roc_curve.png")