#include "opencv2/objdetect/objdetect.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include #include using namespace std; using namespace cv; int main( int argc, const char** argv ) { vector points; points.push_back(Point2f(0.0, 0.0)); points.push_back(Point2f(-1.0, 1.0)); points.push_back(Point2f(1.0, 1.0)); points.push_back(Point2f(1.0, -1.0)); points.push_back(Point2f(-1.0, -1.0)); RotatedRect rrect; rrect = fitEllipse(points); cout << rrect.center << endl; cout << rrect.size.width << endl; cout << rrect.size.height << endl; } void help() { cout << "\nThis program demonstrates the cascade recognizer. Now you can use Haar or LBP features.\n" "This classifier can recognize many ~rigid objects, it's most known use is for faces.\n" "Usage:\n" "./facedetect [--cascade= this is the primary trained classifier such as frontal face]\n" " [--nested-cascade[=nested_cascade_path this an optional secondary classifier such as eyes]]\n" " [--scale=\n" " [filename|camera_index]\n\n" "see facedetect.cmd for one call:\n" "./facedetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --nested-cascade=\"../../data/haarcascades/haarcascade_eye.xml\" --scale=1.3 \n" "Hit any key to quit.\n" "Using OpenCV version " << CV_VERSION << "\n" << endl; } void detectAndDraw( Mat& img, CascadeClassifier& cascade, CascadeClassifier& nestedCascade, double scale); String cascadeName = "../../data/haarcascades/haarcascade_frontalface_alt.xml"; String nestedCascadeName = "../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml"; int main1( int argc, const char** argv ) { CvCapture* capture = 0; Mat frame, frameCopy, image; const String scaleOpt = "--scale="; size_t scaleOptLen = scaleOpt.length(); const String cascadeOpt = "--cascade="; size_t cascadeOptLen = cascadeOpt.length(); const String nestedCascadeOpt = "--nested-cascade"; size_t nestedCascadeOptLen = nestedCascadeOpt.length(); String inputName; help(); CascadeClassifier cascade, nestedCascade; double scale = 1; for( int i = 1; i < argc; i++ ) { cout << "Processing " << i << " " << argv[i] << endl; if( cascadeOpt.compare( 0, cascadeOptLen, argv[i], cascadeOptLen ) == 0 ) { cascadeName.assign( argv[i] + cascadeOptLen ); cout << " from which we have cascadeName= " << cascadeName << endl; } else if( nestedCascadeOpt.compare( 0, nestedCascadeOptLen, argv[i], nestedCascadeOptLen ) == 0 ) { if( argv[i][nestedCascadeOpt.length()] == '=' ) nestedCascadeName.assign( argv[i] + nestedCascadeOpt.length() + 1 ); if( !nestedCascade.load( nestedCascadeName ) ) cerr << "WARNING: Could not load classifier cascade for nested objects" << endl; } else if( scaleOpt.compare( 0, scaleOptLen, argv[i], scaleOptLen ) == 0 ) { if( !sscanf( argv[i] + scaleOpt.length(), "%lf", &scale ) || scale < 1 ) scale = 1; cout << " from which we read scale = " << scale << endl; } else if( argv[i][0] == '-' ) { cerr << "WARNING: Unknown option %s" << argv[i] << endl; } else inputName.assign( argv[i] ); } if( !cascade.load( cascadeName ) ) { cerr << "ERROR: Could not load classifier cascade" << endl; cerr << "Usage: facedetect [--cascade=]\n" " [--nested-cascade[=nested_cascade_path]]\n" " [--scale[=\n" " [filename|camera_index]\n" << endl ; return -1; } if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') ) { capture = cvCaptureFromCAM( inputName.empty() ? 0 : inputName.c_str()[0] - '0' ); int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0' ; if(!capture) cout << "Capture from CAM " << c << " didn't work" << endl; } else if( inputName.size() ) { image = imread( inputName, 1 ); if( image.empty() ) { capture = cvCaptureFromAVI( inputName.c_str() ); if(!capture) cout << "Capture from AVI didn't work" << endl; } } else { image = imread( "lena.jpg", 1 ); if(image.empty()) cout << "Couldn't read lena.jpg" << endl; } cvNamedWindow( "result", 1 ); if( capture ) { cout << "In capture ..." << endl; for(;;) { IplImage* iplImg = cvQueryFrame( capture ); frame = iplImg; if( frame.empty() ) break; if( iplImg->origin == IPL_ORIGIN_TL ) frame.copyTo( frameCopy ); else flip( frame, frameCopy, 0 ); detectAndDraw( frameCopy, cascade, nestedCascade, scale ); if( waitKey( 10 ) >= 0 ) goto _cleanup_; } waitKey(0); _cleanup_: cvReleaseCapture( &capture ); } else { cout << "In image read" << endl; if( !image.empty() ) { detectAndDraw( image, cascade, nestedCascade, scale ); waitKey(0); } else if( !inputName.empty() ) { /* assume it is a text file containing the list of the image filenames to be processed - one per line */ FILE* f = fopen( inputName.c_str(), "rt" ); if( f ) { char buf[1000+1]; while( fgets( buf, 1000, f ) ) { int len = (int)strlen(buf), c; while( len > 0 && isspace(buf[len-1]) ) len--; buf[len] = '\0'; cout << "file " << buf << endl; image = imread( buf, 1 ); if( !image.empty() ) { detectAndDraw( image, cascade, nestedCascade, scale ); c = waitKey(0); if( c == 27 || c == 'q' || c == 'Q' ) break; } else { cerr << "Aw snap, couldn't read image " << buf << endl; } } fclose(f); } } } cvDestroyWindow("result"); return 0; } void detectAndDraw( Mat& img, CascadeClassifier& cascade, CascadeClassifier& nestedCascade, double scale) { int i = 0; double t = 0; vector faces; const static Scalar colors[] = { CV_RGB(0,0,255), CV_RGB(0,128,255), CV_RGB(0,255,255), CV_RGB(0,255,0), CV_RGB(255,128,0), CV_RGB(255,255,0), CV_RGB(255,0,0), CV_RGB(255,0,255)} ; Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 ); cvtColor( img, gray, CV_BGR2GRAY ); resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR ); equalizeHist( smallImg, smallImg ); t = (double)cvGetTickCount(); cascade.detectMultiScale( smallImg, faces, 1.1, 2, 0 //|CV_HAAR_FIND_BIGGEST_OBJECT //|CV_HAAR_DO_ROUGH_SEARCH |CV_HAAR_SCALE_IMAGE , Size(30, 30) ); t = (double)cvGetTickCount() - t; printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) ); for( vector::const_iterator r = faces.begin(); r != faces.end(); r++, i++ ) { Mat smallImgROI; vector nestedObjects; Point center; Scalar color = colors[i%8]; int radius; center.x = cvRound((r->x + r->width*0.5)*scale); center.y = cvRound((r->y + r->height*0.5)*scale); radius = cvRound((r->width + r->height)*0.25*scale); circle( img, center, radius, color, 3, 8, 0 ); if( nestedCascade.empty() ) continue; smallImgROI = smallImg(*r); nestedCascade.detectMultiScale( smallImgROI, nestedObjects, 1.1, 2, 0 //|CV_HAAR_FIND_BIGGEST_OBJECT //|CV_HAAR_DO_ROUGH_SEARCH //|CV_HAAR_DO_CANNY_PRUNING |CV_HAAR_SCALE_IMAGE , Size(30, 30) ); for( vector::const_iterator nr = nestedObjects.begin(); nr != nestedObjects.end(); nr++ ) { center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale); center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale); radius = cvRound((nr->width + nr->height)*0.25*scale); circle( img, center, radius, color, 3, 8, 0 ); } } cv::imshow( "result", img ); }