#define CV_NO_BACKWARD_COMPATIBILITY #include #include #include // Rearrange the quadrants of Fourier image so that the origin is at // the image center // src & dst arrays of equal size & type void cvShiftDFT(CvArr * src_arr, CvArr * dst_arr ) { CvMat * tmp=0; CvMat q1stub, q2stub; CvMat q3stub, q4stub; CvMat d1stub, d2stub; CvMat d3stub, d4stub; CvMat * q1, * q2, * q3, * q4; CvMat * d1, * d2, * d3, * d4; CvSize size = cvGetSize(src_arr); CvSize dst_size = cvGetSize(dst_arr); int cx, cy; if(dst_size.width != size.width || dst_size.height != size.height){ cvError( CV_StsUnmatchedSizes, "cvShiftDFT", "Source and Destination arrays must have equal sizes", __FILE__, __LINE__ ); } if(src_arr==dst_arr){ tmp = cvCreateMat(size.height/2, size.width/2, cvGetElemType(src_arr)); } cx = size.width/2; cy = size.height/2; // image center q1 = cvGetSubRect( src_arr, &q1stub, cvRect(0,0,cx, cy) ); q2 = cvGetSubRect( src_arr, &q2stub, cvRect(cx,0,cx,cy) ); q3 = cvGetSubRect( src_arr, &q3stub, cvRect(cx,cy,cx,cy) ); q4 = cvGetSubRect( src_arr, &q4stub, cvRect(0,cy,cx,cy) ); d1 = cvGetSubRect( src_arr, &d1stub, cvRect(0,0,cx,cy) ); d2 = cvGetSubRect( src_arr, &d2stub, cvRect(cx,0,cx,cy) ); d3 = cvGetSubRect( src_arr, &d3stub, cvRect(cx,cy,cx,cy) ); d4 = cvGetSubRect( src_arr, &d4stub, cvRect(0,cy,cx,cy) ); if(src_arr!=dst_arr){ if( !CV_ARE_TYPES_EQ( q1, d1 )){ cvError( CV_StsUnmatchedFormats, "cvShiftDFT", "Source and Destination arrays must have the same format", __FILE__, __LINE__ ); } cvCopy(q3, d1, 0); cvCopy(q4, d2, 0); cvCopy(q1, d3, 0); cvCopy(q2, d4, 0); } else{ cvCopy(q3, tmp, 0); cvCopy(q1, q3, 0); cvCopy(tmp, q1, 0); cvCopy(q4, tmp, 0); cvCopy(q2, q4, 0); cvCopy(tmp, q2, 0); } } int main(int argc, char ** argv) { const char* filename = argc >=2 ? argv[1] : "lena.jpg"; IplImage * im; IplImage * realInput; IplImage * imaginaryInput; IplImage * complexInput; int dft_M, dft_N; CvMat* dft_A, tmp; IplImage * image_Re; IplImage * image_Im; double m, M; im = cvLoadImage( filename, CV_LOAD_IMAGE_GRAYSCALE ); if( !im ) return -1; realInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 1); imaginaryInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 1); complexInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 2); cvScale(im, realInput, 1.0, 0.0); cvZero(imaginaryInput); cvMerge(realInput, imaginaryInput, NULL, NULL, complexInput); dft_M = cvGetOptimalDFTSize( im->height - 1 ); dft_N = cvGetOptimalDFTSize( im->width - 1 ); dft_A = cvCreateMat( dft_M, dft_N, CV_64FC2 ); image_Re = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1); image_Im = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1); // copy A to dft_A and pad dft_A with zeros cvGetSubRect( dft_A, &tmp, cvRect(0,0, im->width, im->height)); cvCopy( complexInput, &tmp, NULL ); if( dft_A->cols > im->width ) { cvGetSubRect( dft_A, &tmp, cvRect(im->width,0, dft_A->cols - im->width, im->height)); cvZero( &tmp ); } // no need to pad bottom part of dft_A with zeros because of // use nonzero_rows parameter in cvDFT() call below cvDFT( dft_A, dft_A, CV_DXT_FORWARD, complexInput->height ); cvNamedWindow("win", 0); cvNamedWindow("magnitude", 0); cvShowImage("win", im); // Split Fourier in real and imaginary parts cvSplit( dft_A, image_Re, image_Im, 0, 0 ); // Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2) cvPow( image_Re, image_Re, 2.0); cvPow( image_Im, image_Im, 2.0); cvAdd( image_Re, image_Im, image_Re, NULL); cvPow( image_Re, image_Re, 0.5 ); // Compute log(1 + Mag) cvAddS( image_Re, cvScalarAll(1.0), image_Re, NULL ); // 1 + Mag cvLog( image_Re, image_Re ); // log(1 + Mag) // Rearrange the quadrants of Fourier image so that the origin is at // the image center cvShiftDFT( image_Re, image_Re ); cvMinMaxLoc(image_Re, &m, &M, NULL, NULL, NULL); cvScale(image_Re, image_Re, 1.0/(M-m), 1.0*(-m)/(M-m)); cvShowImage("magnitude", image_Re); cvWaitKey(-1); return 0; }