// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "perf_precomp.hpp" #include "opencv2/core/ocl.hpp" #include "opencv2/dnn/shape_utils.hpp" namespace opencv_test { CV_ENUM(DNNBackend, DNN_BACKEND_DEFAULT, DNN_BACKEND_HALIDE, DNN_BACKEND_INFERENCE_ENGINE) CV_ENUM(DNNTarget, DNN_TARGET_CPU, DNN_TARGET_OPENCL) class DNNTestNetwork : public ::perf::TestBaseWithParam< tuple > { public: dnn::Backend backend; dnn::Target target; dnn::Net net; DNNTestNetwork() { backend = (dnn::Backend)(int)get<0>(GetParam()); target = (dnn::Target)(int)get<1>(GetParam()); } void processNet(std::string weights, std::string proto, std::string halide_scheduler, const Mat& input, const std::string& outputLayer = "") { if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL) { #if defined(HAVE_OPENCL) if (!cv::ocl::useOpenCL()) #endif { throw cvtest::SkipTestException("OpenCL is not available/disabled in OpenCV"); } } if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL) throw SkipTestException("Skip OpenCL target of Inference Engine backend"); randu(input, 0.0f, 1.0f); weights = findDataFile(weights, false); if (!proto.empty()) proto = findDataFile(proto, false); if (backend == DNN_BACKEND_HALIDE) { if (halide_scheduler == "disabled") throw cvtest::SkipTestException("Halide test is disabled"); if (!halide_scheduler.empty()) halide_scheduler = findDataFile(std::string("dnn/halide_scheduler_") + (target == DNN_TARGET_OPENCL ? "opencl_" : "") + halide_scheduler, true); } net = readNet(proto, weights); net.setInput(blobFromImage(input, 1.0, Size(), Scalar(), false)); net.setPreferableBackend(backend); net.setPreferableTarget(target); if (backend == DNN_BACKEND_HALIDE) { net.setHalideScheduler(halide_scheduler); } MatShape netInputShape = shape(1, 3, input.rows, input.cols); size_t weightsMemory = 0, blobsMemory = 0; net.getMemoryConsumption(netInputShape, weightsMemory, blobsMemory); int64 flops = net.getFLOPS(netInputShape); CV_Assert(flops > 0); net.forward(outputLayer); // warmup std::cout << "Memory consumption:" << std::endl; std::cout << " Weights(parameters): " << divUp(weightsMemory, 1u<<20) << " Mb" << std::endl; std::cout << " Blobs: " << divUp(blobsMemory, 1u<<20) << " Mb" << std::endl; std::cout << "Calculation complexity: " << flops * 1e-9 << " GFlops" << std::endl; PERF_SAMPLE_BEGIN() net.forward(); PERF_SAMPLE_END() SANITY_CHECK_NOTHING(); } }; PERF_TEST_P_(DNNTestNetwork, AlexNet) { processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt", "alexnet.yml", Mat(cv::Size(227, 227), CV_32FC3)); } PERF_TEST_P_(DNNTestNetwork, GoogLeNet) { processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt", "", Mat(cv::Size(224, 224), CV_32FC3)); } PERF_TEST_P_(DNNTestNetwork, ResNet_50) { processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt", "resnet_50.yml", Mat(cv::Size(224, 224), CV_32FC3)); } PERF_TEST_P_(DNNTestNetwork, SqueezeNet_v1_1) { processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt", "squeezenet_v1_1.yml", Mat(cv::Size(227, 227), CV_32FC3)); } PERF_TEST_P_(DNNTestNetwork, Inception_5h) { if (backend == DNN_BACKEND_INFERENCE_ENGINE) throw SkipTestException(""); processNet("dnn/tensorflow_inception_graph.pb", "", "inception_5h.yml", Mat(cv::Size(224, 224), CV_32FC3), "softmax2"); } PERF_TEST_P_(DNNTestNetwork, ENet) { if (backend == DNN_BACKEND_INFERENCE_ENGINE) throw SkipTestException(""); processNet("dnn/Enet-model-best.net", "", "enet.yml", Mat(cv::Size(512, 256), CV_32FC3)); } PERF_TEST_P_(DNNTestNetwork, SSD) { if (backend == DNN_BACKEND_INFERENCE_ENGINE) throw SkipTestException(""); processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", "dnn/ssd_vgg16.prototxt", "disabled", Mat(cv::Size(300, 300), CV_32FC3)); } PERF_TEST_P_(DNNTestNetwork, OpenFace) { if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); processNet("dnn/openface_nn4.small2.v1.t7", "", "", Mat(cv::Size(96, 96), CV_32FC3)); } PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_Caffe) { if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); processNet("dnn/MobileNetSSD_deploy.caffemodel", "dnn/MobileNetSSD_deploy.prototxt", "", Mat(cv::Size(300, 300), CV_32FC3)); } PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_TensorFlow) { if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL || backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); processNet("dnn/ssd_mobilenet_v1_coco.pb", "ssd_mobilenet_v1_coco.pbtxt", "", Mat(cv::Size(300, 300), CV_32FC3)); } PERF_TEST_P_(DNNTestNetwork, DenseNet_121) { if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); processNet("dnn/DenseNet_121.caffemodel", "dnn/DenseNet_121.prototxt", "", Mat(cv::Size(224, 224), CV_32FC3)); } PERF_TEST_P_(DNNTestNetwork, OpenPose_pose_coco) { if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); processNet("dnn/openpose_pose_coco.caffemodel", "dnn/openpose_pose_coco.prototxt", "", Mat(cv::Size(368, 368), CV_32FC3)); } PERF_TEST_P_(DNNTestNetwork, OpenPose_pose_mpi) { if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi.prototxt", "", Mat(cv::Size(368, 368), CV_32FC3)); } PERF_TEST_P_(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages) { if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); // The same .caffemodel but modified .prototxt // See https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/pose/poseParameters.cpp processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi_faster_4_stages.prototxt", "", Mat(cv::Size(368, 368), CV_32FC3)); } PERF_TEST_P_(DNNTestNetwork, opencv_face_detector) { if (backend == DNN_BACKEND_HALIDE || backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL) throw SkipTestException(""); processNet("dnn/opencv_face_detector.caffemodel", "dnn/opencv_face_detector.prototxt", "", Mat(cv::Size(300, 300), CV_32FC3)); } PERF_TEST_P_(DNNTestNetwork, Inception_v2_SSD_TensorFlow) { if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "ssd_inception_v2_coco_2017_11_17.pbtxt", "", Mat(cv::Size(300, 300), CV_32FC3)); } const tuple testCases[] = { #ifdef HAVE_HALIDE tuple(DNN_BACKEND_HALIDE, DNN_TARGET_CPU), tuple(DNN_BACKEND_HALIDE, DNN_TARGET_OPENCL), #endif #ifdef HAVE_INF_ENGINE tuple(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_CPU), #endif tuple(DNN_BACKEND_DEFAULT, DNN_TARGET_CPU), tuple(DNN_BACKEND_DEFAULT, DNN_TARGET_OPENCL) }; INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, testing::ValuesIn(testCases)); } // namespace